Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany.
Institute for Diabetes Research and Metabolic Diseases, Helmholtz Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany.
Z Med Phys. 2024 Aug;34(3):436-445. doi: 10.1016/j.zemedi.2022.12.004. Epub 2023 Jan 31.
This work proposes a method for automatic standardized assessment of bone marrow volume and spatial distribution of the proton density fat fraction (PDFF) in vertebral bodies. Intra- and interindividual variability in size and shape of vertebral bodies is a challenge for comparable interindividual evaluation and monitoring of changes in the composition and distribution of bone marrow due to aging and/or intervention. Based on deep learning image segmentation, bone marrow PDFF of single vertebral bodies is mapped to a cylindrical template and corrected for the inclination with respect to the horizontal plane. The proposed technique was applied and tested in a cohort of 60 healthy (30 males, 30 females) individuals. Obtained bone marrow volumes and mean PDFF values are comparable to former manual and (semi-)automatic approaches. Moreover, the proposed method allows shape-independent characterization of the spatial PDFF distribution inside vertebral bodies.
本研究提出了一种自动标准化评估椎体骨髓体积和质子密度脂肪分数(PDFF)空间分布的方法。椎体大小和形状的个体内和个体间差异是对其进行可比个体评估以及监测因衰老和/或干预而导致的骨髓成分和分布变化的挑战。基于深度学习图像分割,将单个椎体的骨髓 PDFF 映射到圆柱模板,并校正相对于水平面的倾斜度。该技术已在 60 名健康个体(30 名男性,30 名女性)的队列中应用和测试。所获得的骨髓体积和平均 PDFF 值与以前的手动和(半自动)方法相当。此外,该方法还允许对椎体内部 PDFF 空间分布进行形状独立的特征描述。