Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, 3498838, Israel.
Nat Commun. 2023 Feb 1;14(1):539. doi: 10.1038/s41467-023-36248-y.
Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals.
小麦是全球粮食安全的重要作物,它能很好地适应各种土壤。然而,塑造不同根系结构的基因网络仍知之甚少。我们在这里报告,来自 III 亚家族的一组单子叶植物特异性 12-OXOPHYTODIENOATE REDUCTASE 基因(OPRIII)的剂量差异调节了小麦根系结构的关键差异,这些差异与水分限制条件下的谷物产量有关。在 OPRIII 中具有功能丧失突变的小麦植株具有更长的初生根,而增加 OPRIII 剂量或转基因过表达导致初生根生长减少、侧根早熟和茉莉酸(JA 和 JA-Ile)增加。茉莉酸生物合成的药理学抑制消除了根长差异,这与 JA 介导的机制一致。转基因和野生型系的转录组分析显示,JA 生物合成和活性氧(ROS)途径显著富集,与 ROS 分布的变化平行。OPRIII 基因为在小麦和其他谷物中设计根系结构提供了一个有用的切入点。