Suppr超能文献

器官芯片在牙科、口腔和颅面研究中的应用。

The Application of Organs-on-a-Chip in Dental, Oral, and Craniofacial Research.

机构信息

Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

出版信息

J Dent Res. 2023 Apr;102(4):364-375. doi: 10.1177/00220345221145555. Epub 2023 Feb 1.

Abstract

The current development of microfluidics-based microphysiological systems (MPSs) will rapidly lead to a paradigm shift from traditional static 2-dimensional cell cultivation towards organized tissue culture within a dynamic cellular milieu. Especially organs-on-a-chip (OoCs) can very precisely re-create the mechanical and unique anatomical structures of the oral environment. This review provides an introduction to such technology, from commonly used chip materials and fabrication methods to the application of OoC in in vitro culture. OoCs are advantageous because of their small-scaled culture environment, the highly controlled dynamic experimental conditions, and the likeness to the in vivo structure. We specifically focus on current chip designs in dental, oral, and craniofacial (DOC) research. Also, future perspectives are discussed, like model standardization and the development of integrated platforms with advanced read-out functionality. By doing so, it will be possible for OoCs to serve as an alternative for animal testing and to develop highly predictive human models for clinical experiments and even personalized medicine.

摘要

基于微流控的微生理系统(MPS)的当前发展将迅速导致从传统的静态 2 维细胞培养向动态细胞环境中的组织培养转变。特别是器官芯片(OoC)可以非常精确地再现口腔环境的机械和独特的解剖结构。本文从常用的芯片材料和制造方法,到 OoC 在体外培养中的应用,对这种技术进行了介绍。OoC 具有优势,因为其具有小尺度的培养环境、高度可控的动态实验条件和与体内结构的相似性。我们特别关注口腔、牙科和颅面(DOC)研究领域的当前芯片设计。此外,还讨论了未来的展望,如模型标准化和具有先进读出功能的集成平台的开发。通过这样做,OoC 将有可能替代动物实验,并为临床实验甚至个性化医疗开发高度预测性的人类模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ae/10031637/0715b5963ed8/10.1177_00220345221145555-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验