Suppr超能文献

LSS-VGG16:基于深度学习的腰椎管狭窄症诊断。

LSS-VGG16: Diagnosis of Lumbar Spinal Stenosis With Deep Learning.

机构信息

Department of Electrical and Electronics Engineering.

Department of Neurosurgery, Kahramanmaras Sutcu Imam Universirty, Kahramanmaras, Turkey.

出版信息

Clin Spine Surg. 2023 Jun 1;36(5):E180-E190. doi: 10.1097/BSD.0000000000001418. Epub 2023 Jan 20.

Abstract

STUDY DESIGN

This was a retrospective study.

OBJECTION

Lumbar Spinal Stenosis (LSS) is a disease that causes chronic low back pain and can often be confused with herniated disk. In this study, a deep learning-based classification model is proposed to make LSS diagnosis quickly and automatically with an objective tool.

SUMMARY OF BACKGROUND DATA

LSS is a disease that causes negative consequences such as low back pain, foot numbness, and pain. Diagnosis of this disease is difficult because it is confused with herniated disk and requires serious expertise. The shape and amount of this stenosis are very important in deciding the surgery and the surgical technique to be applied in these patients. When the spinal canal narrows, as a result of compression on these nerves and/or pressure on the vessels feeding the nerves, poor nutrition of the nerves causes loss of function and structure. Image processing techniques are applied in biomedical images such as MR and CT and high classification success is achieved. In this way, computer-aided diagnosis systems can be realized to help the specialist in the diagnosis of different diseases.

METHODS

To demonstrate the success of the proposed model, different deep learning methods and traditional machine learning techniques have been studied.

RESULTS

The highest classification success was obtained in the VGG16 method, with 87.70%.

CONCLUSIONS

The proposed LSS-VGG16 model reveals that a computer-aided diagnosis system can be created for the diagnosis of spinal canal stenosis. In addition, it was observed that higher classification success was achieved compared with similar studies in the literature. This shows that the proposed LSS-VGG16 model will be an important resource for scientists who will work in this field.

摘要

研究设计

这是一项回顾性研究。

反对意见

腰椎管狭窄症(LSS)是一种引起慢性下腰痛的疾病,常与椎间盘突出相混淆。在这项研究中,提出了一种基于深度学习的分类模型,以便使用客观工具快速自动进行 LSS 诊断。

背景资料概要

LSS 是一种会导致负面后果的疾病,如腰痛、脚麻木和疼痛。由于与椎间盘突出相混淆,需要专业知识,因此这种疾病的诊断很困难。这种狭窄的形状和数量对于决定要应用于这些患者的手术和手术技术非常重要。当椎管变窄时,由于这些神经受到压迫和/或为神经供血的血管受到压迫,导致神经营养不良,从而导致功能和结构丧失。图像处理技术应用于磁共振成像(MR)和计算机断层扫描(CT)等生物医学图像中,可实现高分类成功率。通过这种方式,可以实现计算机辅助诊断系统,以帮助专家诊断不同的疾病。

方法

为了证明所提出模型的成功,研究了不同的深度学习方法和传统机器学习技术。

结果

在 VGG16 方法中获得了最高的分类成功率,为 87.70%。

结论

所提出的 LSS-VGG16 模型表明,可以为椎管狭窄症的诊断创建计算机辅助诊断系统。此外,与文献中的类似研究相比,观察到更高的分类成功率。这表明所提出的 LSS-VGG16 模型将成为该领域科学家的重要资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验