Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia.
Ionis Pharmaceuticals, Carlsbad, California 92008.
J Neurosci. 2023 Mar 8;43(10):1658-1667. doi: 10.1523/JNEUROSCI.1387-22.2022. Epub 2023 Feb 2.
Brain pH is a critical factor for determining neuronal activity, with alkalosis increasing and acidosis reducing excitability. Acid shifts in brain pH through the breathing of carbogen (5% CO/95% O) reduces seizure susceptibility in animal models and patients. The molecular mechanisms underlying this seizure protection remain to be fully elucidated. Here, we demonstrate that male and female mice exposed to carbogen are fully protected from thermogenic-triggered seizures. Whole-cell patch-clamp recordings revealed that acid shifts in extracellular pH (pHo) significantly reduce action potential firing in CA1 pyramidal neurons but did not alter firing in hippocampal inhibitory interneurons. In real-time dynamic clamp experiments, acidification reduced simulated action potential firing generated in hybrid model neurons expressing the excitatory neuron predominant Na1.2 channel. Conversely, acidification had no effect on action potential firing in hybrid model neurons expressing the interneuron predominant Na1.1 channel. Furthermore, knockdown of mRNA using antisense oligonucleotides reduced the protective effects of carbogen on seizure susceptibility. Both carbogen-mediated seizure protection and the reduction in CA1 pyramidal neuron action potential firing by low pHo were maintained in an knock-out mouse ruling out this acid-sensing channel as the underlying molecular target. These data indicate that the acid-mediated reduction in excitatory neuron firing is mediated, at least in part, through the inhibition of Na1.2 channels, whereas inhibitory neuron firing is unaffected. This reduction in pyramidal neuron excitability is the likely basis of seizure suppression caused by carbogen-mediated acidification. Brain pH has long been known to modulate neuronal excitability. Here, we confirm that brain acidification reduces seizure susceptibility in a mouse model of thermogenic seizures. Extracellular acidification reduced excitatory pyramidal neuron firing while having no effect on interneuron firing. Acidification also reduced dynamic clamp firing in cells expressing the Na1.2 channel but not in cells expressing Na1.1 channels. knockdown of Scn2a mRNA reduced seizure protection of acidification. In contrast, acid-mediated seizure protection was maintained in the Asic1a knock-out mouse. These data suggest Na1.2 channel as an important target for acid-mediated seizure protection. Our results have implications on how natural variations in pH can modulate neuronal excitability and highlight potential antiseizure drug development strategies based on the Na1.2 channel.
脑 pH 值是决定神经元活动的关键因素,碱中毒会增加兴奋性,酸中毒则会降低兴奋性。动物模型和患者的研究表明,通过呼吸含 5%二氧化碳和 95%氧气的混合气体(carbogen)可使脑 pH 值发生酸偏移,从而降低癫痫发作的易感性。但这种抗癫痫作用的分子机制仍有待完全阐明。在这里,我们证明了暴露于 carbogen 的雄性和雌性小鼠完全免受发热触发的癫痫发作的影响。全细胞膜片钳记录显示,细胞外 pH 值(pHo)的酸偏移显著降低 CA1 锥体神经元的动作电位发放,但不改变海马抑制性中间神经元的发放。在实时动态箝位实验中,酸化降低了表达兴奋性神经元占主导地位的 Na1.2 通道的混合模型神经元中模拟动作电位发放。相反,酸化对表达中间神经元占主导地位的 Na1.1 通道的混合模型神经元中的动作电位发放没有影响。此外,使用反义寡核苷酸敲低 mRNA 会降低 carbogen 对癫痫易感性的保护作用。低 pHo 引起的 carbogen 介导的癫痫保护作用和 CA1 锥体神经元动作电位发放减少在 knock-out 小鼠中得以维持,排除了这种酸敏通道作为潜在的分子靶点。这些数据表明,兴奋性神经元放电的减少至少部分是通过抑制 Na1.2 通道介导的,而抑制性神经元放电不受影响。这种锥体神经元兴奋性的降低可能是 carbogen 介导的酸化引起的癫痫抑制的基础。脑 pH 值长期以来一直被认为可以调节神经元兴奋性。在这里,我们证实脑酸化可降低发热性癫痫发作的小鼠模型的癫痫易感性。细胞外酸化降低兴奋性锥体神经元放电,而对中间神经元放电没有影响。酸化还降低了表达 Na1.2 通道的细胞中的动态箝位放电,但对表达 Na1.1 通道的细胞没有影响。 Scn2a mRNA 的敲低降低了酸化的抗癫痫保护作用。相比之下,酸介导的癫痫保护作用在 Asic1a knock-out 小鼠中得以维持。这些数据表明 Na1.2 通道是酸介导的抗癫痫保护的重要靶点。我们的研究结果表明,pH 值的自然变化如何调节神经元兴奋性,并强调了基于 Na1.2 通道的潜在抗癫痫药物开发策略。