Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China.
Discipline of Chemistry, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Angew Chem Int Ed Engl. 2020 Aug 17;59(34):14368-14372. doi: 10.1002/anie.202006421. Epub 2020 Jul 6.
We report core@satellite Janus mesoporous silica-Pt@Au (JMPA) nanomotors with pH-responsive multi-phoretic propulsion. The JMPA nanomotors first undergo self-diffusiophoretic propulsion in 3.0 % H O due to the isolation of the Au nanoparticles (AuNPs) from the PtNPs layer. Then the weak acidity of H O can trigger the disassembly and reassembly of the AuNPs, resulting in the Janus distribution of large AuNPs aggregates. Such reconstruction of JMPA leads to the contact between PtNPs and AuNPs aggregates, thus changing the propulsion mechanism to self-electrophoresis. The asymmetric and aggregated AuNPs also enable the generation of a thermal gradient under laser irradiation, which propels the JMPA nanomotors by self-thermophoresis. Such multi-phoretic propulsion offers considerable promise for developing advanced nanomachines with a stimuli-responsive switch of propulsion modes in biomedical applications.
我们报告了具有 pH 响应多推进力的核@卫星 Janus 介孔硅-Pt@Au(JMPA)纳米马达。JMPA 纳米马达首先在 3.0%H 2 O 中经历自扩散推进,这是由于 Au 纳米颗粒(AuNPs)与 PtNPs 层的隔离。然后,H 2 O 的弱酸性可以触发 AuNPs 的解体和重组,导致大的 AuNPs 聚集体的 Janus 分布。这种 JMPA 的重构导致 PtNPs 和 AuNPs 聚集体之间的接触,从而改变推进机制为自电泳。不对称和聚集的 AuNPs 也可以在激光照射下产生热梯度,从而通过自热泳推动 JMPA 纳米马达。这种多推进力为开发具有生物医学应用中推进模式刺激响应开关的先进纳米机器提供了很大的希望。