Suppr超能文献

不同性别大学生网络借贷的风险因素——中国的一项横断面研究

Risk factors for college students' online lending between different genders-A cross-sectional study in China.

作者信息

Zhang Yan, Luo Lun, Li Pan, Xu Yun, Chen Zi

机构信息

Chengdu Second People's Hospital, Chengdu, Sichuan, China.

Chengdu Medical College, Chengdu, Sichuan, China.

出版信息

Front Psychol. 2023 Jan 17;14:965049. doi: 10.3389/fpsyg.2023.965049. eCollection 2023.

Abstract

BACKGROUND

Online lending on campus is given more attention by researchers as its prominent adverse effects on students. The deficiencies of the previous studies on its psychological factors and intervention strategies were only based on qualitative research. Moreover, there is no study on gender differences. Therefore, our study aims to analyze the gender differences in psychological risk factors and give some practical suggestions for the intervention by quantitative methods.

METHOD

This is a cross-sectional survey among medical college students in Chengdu. A total of 984 effective questionnaires were collected. The questionnaire includes demographic data, monthly expenses, self-evaluation for three central psychology causing online lending based on empiricism (conformity, comparison, and hedonism), and three psychological assessment instruments (the Chinese version of the Satisfaction with Life Scale, Egna Minnen av Barndoms Uppfostran, and 144-item version of Temperament and Character Inventory). -test -test and Binary logistic regression were used to analyze the gender differences in variables and the risk factors of online lending for males and females, respectively.

RESULTS

The utilization rate of online lending exhibited a significant gender difference ( < 0.001). In addition, there were gender differences in the scores on SWLS and some subscales of C-EMBU and TCI-144. The risk factors for males' were family members using online lending (OR = 5.527, 95% CI = 1.784-17.125) and lower scores on HA (OR = 0.938, 95% CI = 0.888-0.990). The risk factors for females' online lending were family members using online lending (OR = 2.288, 95% CI = 1.201-4.362), hedonism (OR = 5.913, 95% CI = 1.327-26.341), and higher scores on mother's punishment (OR = 1.099, 95% CI = 1.007-1.199).

CONCLUSION

The utilization rate of online lending in males was significantly higher than in females. More attention should be paid to gender differences and the impact of family members' using online lending on students when intervening in online lending.

摘要

背景

校园网络借贷因其对学生的显著不良影响而受到研究者更多关注。以往关于其心理因素和干预策略的研究不足仅基于定性研究。此外,尚无关于性别差异的研究。因此,本研究旨在通过定量方法分析心理风险因素中的性别差异,并给出一些干预方面的实用建议。

方法

这是一项对成都医科大学生的横断面调查。共收集到984份有效问卷。问卷包括人口统计学数据、月支出、基于经验主义对导致网络借贷的三种核心心理(从众、攀比和享乐主义)的自我评估,以及三种心理评估工具(生活满意度量表中文版、父母养育方式问卷简式中文版和气质与性格量表144项版)。采用t检验和二元逻辑回归分别分析变量中的性别差异以及男性和女性网络借贷的风险因素。

结果

网络借贷的使用率存在显著性别差异(P<0.001)。此外,生活满意度量表得分以及父母养育方式问卷简式中文版和气质与性格量表144项版的一些子量表得分存在性别差异。男性网络借贷的风险因素是家庭成员使用网络借贷(比值比=5.527,95%置信区间=1.784-17.125)和回避伤害得分较低(比值比=0.938,95%置信区间=0.888-0.990)。女性网络借贷的风险因素是家庭成员使用网络借贷(比值比=2.288,95%置信区间=1.201-4.362)、享乐主义(比值比=5.913,95%置信区间=1.327-26.341)以及母亲惩罚得分较高(比值比=1.099,95%置信区间=1.007-1.199)。

结论

男性网络借贷的使用率显著高于女性。在干预网络借贷时,应更多关注性别差异以及家庭成员使用网络借贷对学生的影响。

相似文献

本文引用的文献

1
Explainable AI in Fintech Risk Management.金融科技风险管理中的可解释人工智能
Front Artif Intell. 2020 Apr 24;3:26. doi: 10.3389/frai.2020.00026. eCollection 2020.
2
Investigating the impact of student loan debt on new practitioners.调查学生贷款债务对新从业者的影响。
J Am Pharm Assoc (2003). 2021 Mar-Apr;61(2):191-197. doi: 10.1016/j.japh.2020.11.007. Epub 2020 Dec 7.
5
Physical Therapist Student Loan Debt.物理治疗师学生贷款债务。
Phys Ther. 2016 Nov;96(11):1685-1688. doi: 10.2522/ptj.20160307.
7
The Satisfaction With Life Scale.生活满意度量表。
J Pers Assess. 1985 Feb;49(1):71-5. doi: 10.1207/s15327752jpa4901_13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验