Suppr超能文献

用于量子点器件状态识别的基于射线的框架。

Ray-based framework for state identification in quantum dot devices.

作者信息

Zwolak Justyna P, McJunkin Thomas, Kalantre Sandesh S, Neyens Samuel F, MacQuarrie E R, Eriksson Mark A, Taylor Jacob M

机构信息

National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

PRX quantum. 2021 Jun 1;2(2). doi: 10.1103/PRXQuantum.2.020335.

Abstract

Quantum dots (QDs) defined with electrostatic gates are a leading platform for a scalable quantum computing implementation. However, with increasing numbers of qubits, the complexity of the control parameter space also grows. Traditional measurement techniques, relying on complete or near-complete exploration via two-parameter scans (images) of the device response, quickly become impractical with increasing numbers of gates. Here we propose to circumvent this challenge by introducing a measurement technique relying on one-dimensional projections of the device response in the multidimensional parameter space. Dubbed the "ray-based classification (RBC) framework," we use this machine learning approach to implement a classifier for QD states, enabling automated recognition of qubit-relevant parameter regimes. We show that RBC surpasses the 82% accuracy benchmark from the experimental implementation of image-based classification techniques from prior work, while reducing the number of measurement points needed by up to 70%. The reduction in measurement cost is a significant gain for time-intensive QD measurements and is a step forward toward the scalability of these devices. We also discuss how the RBC-based optimizer, which tunes the device to a multiqubit regime, performs when tuning in the two-dimensional and three-dimensional parameter spaces defined by plunger and barrier gates that control the QDs. This work provides experimental validation of both efficient state identification and optimization with machine learning techniques for non-traditional measurements in quantum systems with high-dimensional parameter spaces and time-intensive measurements.

摘要

通过静电门定义的量子点(QDs)是可扩展量子计算实现的领先平台。然而,随着量子比特数量的增加,控制参数空间的复杂性也会增长。传统的测量技术依赖于通过对设备响应进行双参数扫描(图像)来进行完整或近乎完整的探索,随着门数量的增加,很快就变得不切实际。在这里,我们提出通过引入一种依赖于多维参数空间中设备响应的一维投影的测量技术来规避这一挑战。我们将这种机器学习方法称为“基于射线的分类(RBC)框架”,用于实现量子点状态的分类器,从而能够自动识别与量子比特相关的参数区域。我们表明,RBC超过了先前工作中基于图像的分类技术实验实现的82%准确率基准,同时将所需的测量点数减少了多达70%。测量成本的降低对于耗时的量子点测量来说是一个重大收获,并且是朝着这些设备的可扩展性迈出的一步。我们还讨论了基于RBC的优化器在由控制量子点的柱塞门和势垒门定义的二维和三维参数空间中进行调谐时,将设备调谐到多量子比特区域的性能。这项工作为在具有高维参数空间和耗时测量的量子系统中使用机器学习技术进行高效状态识别和优化的非传统测量提供了实验验证。

相似文献

5
Electrical Control of Uniformity in Quantum Dot Devices.量子点器件中均匀性的电控制。
Nano Lett. 2023 Apr 12;23(7):2522-2529. doi: 10.1021/acs.nanolett.2c04446. Epub 2023 Mar 28.
6
Experimental Online Quantum Dots Charge Autotuning Using Neural Networks.利用神经网络进行实验性在线量子点电荷自动调谐
Nano Lett. 2025 Mar 12;25(10):3717-3725. doi: 10.1021/acs.nanolett.4c04889. Epub 2025 Feb 27.
8
Generation of genuine entanglement up to 51 superconducting qubits.生成多达 51 个超导量子比特的真纠缠态。
Nature. 2023 Jul;619(7971):738-742. doi: 10.1038/s41586-023-06195-1. Epub 2023 Jul 12.

引用本文的文献

1
Shared control of a 16 semiconductor quantum dot crossbar array.16半导体量子点交叉阵列的共享控制
Nat Nanotechnol. 2024 Jan;19(1):21-27. doi: 10.1038/s41565-023-01491-3. Epub 2023 Aug 28.

本文引用的文献

1
A four-qubit germanium quantum processor.一个四量子位的锗量子处理器。
Nature. 2021 Mar;591(7851):580-585. doi: 10.1038/s41586-021-03332-6. Epub 2021 Mar 24.
4
Memory devices and applications for in-memory computing.用于内存计算的存储设备和应用。
Nat Nanotechnol. 2020 Jul;15(7):529-544. doi: 10.1038/s41565-020-0655-z. Epub 2020 Mar 30.
6
A programmable two-qubit quantum processor in silicon.硅基可编程两量子比特量子处理器。
Nature. 2018 Mar 29;555(7698):633-637. doi: 10.1038/nature25766. Epub 2018 Feb 14.
9
Resonantly driven CNOT gate for electron spins.共振驱动的电子自旋 CNOT 门。
Science. 2018 Jan 26;359(6374):439-442. doi: 10.1126/science.aao5965. Epub 2017 Dec 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验