Yee Chad, Görtemaker Katharina, Wellpott Rieke, Koch Karl-Wilhelm
Division of Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany.
Research Center Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany.
Front Mol Neurosci. 2023 Jan 17;16:1107025. doi: 10.3389/fnmol.2023.1107025. eCollection 2023.
Cone photoreceptor cells of night-migratory songbirds seem to process the primary steps of two different senses, vision and magnetoreception. The molecular basis of phototransduction is a prototypical G protein-coupled receptor pathway starting with the photoexcitation of rhodopsin or cone opsin thereby activating a heterotrimeric G protein named transducin. This interaction is well understood in vertebrate rod cells, but parameter describing protein-protein interactions of cone specific proteins are rare and not available for migratory birds. European robin is a model organism for studying the orientation of birds in the earth magnetic field. Recent findings showed a link between the putative magnetoreceptor cryptochrome 4a and the cone specific G-protein of European robin. In the present work, we investigated the interaction of European robin cone specific G protein and cytoplasmic regions of long wavelength opsin. We identified the second loop in opsin connecting transmembrane regions three and four as a critical binding interface. Surface plasmon resonance studies using a synthetic peptide representing the second cytoplasmic loop and purified G protein -subunit showed a high affinity interaction with a value of 21 nM. Truncation of the G protein -subunit at the C-terminus by six amino acids slightly decreased the affinity. Our results suggest that binding of the G protein to cryptochrome can compete with the interaction of G protein and non-photoexcited long wavelength opsin. Thus, the parallel presence of two different sensory pathways in bird cone photoreceptors is reasonable under dark-adapted conditions or during illumination with short wavelengths.
夜间迁徙鸣禽的视锥光感受器细胞似乎能处理两种不同感官(视觉和磁感受)的主要步骤。光转导的分子基础是一种典型的G蛋白偶联受体途径,始于视紫红质或视锥视蛋白的光激发,从而激活一种名为转导蛋白的异源三聚体G蛋白。这种相互作用在脊椎动物的视杆细胞中已得到充分理解,但描述视锥特异性蛋白之间蛋白质-蛋白质相互作用的参数很少,且对于迁徙鸟类来说并不存在。欧洲知更鸟是研究鸟类在地球磁场中定向的模式生物。最近的研究结果表明,假定的磁感受器隐花色素4a与欧洲知更鸟的视锥特异性G蛋白之间存在联系。在本研究中,我们调查了欧洲知更鸟视锥特异性G蛋白与长波长视蛋白细胞质区域之间的相互作用。我们确定视蛋白中连接跨膜区域3和4的第二个环是关键的结合界面。使用代表第二个细胞质环的合成肽和纯化的G蛋白亚基进行的表面等离子体共振研究显示,两者具有高亲和力相互作用,解离常数为21 nM。G蛋白亚基C末端截短6个氨基酸会略微降低亲和力。我们的结果表明,G蛋白与隐花色素的结合可以与G蛋白和非光激发的长波长视蛋白之间的相互作用竞争。因此,在暗适应条件下或用短波长光照时,鸟类视锥光感受器中两种不同感觉途径的并行存在是合理的。