Karampitsakos Theodoros, Sotiropoulou Vasilina, Katsaras Matthaios, Tsiri Panagiota, Georgakopoulou Vasiliki E, Papanikolaou Ilias C, Bibaki Eleni, Tomos Ioannis, Lambiri Irini, Papaioannou Ourania, Zarkadi Eirini, Antonakis Emmanouil, Pandi Aggeliki, Malakounidou Elli, Sampsonas Fotios, Makrodimitri Sotiria, Chrysikos Serafeim, Hillas Georgios, Dimakou Katerina, Tzanakis Nikolaos, Sipsas Nikolaos V, Antoniou Katerina, Tzouvelekis Argyris
Department of Respiratory Medicine, University General Hospital of Patras, Patras, Greece.
Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Athens, Greece.
Front Med (Lausanne). 2023 Jan 17;9:1083264. doi: 10.3389/fmed.2022.1083264. eCollection 2022.
Post-acute sequelae of COVID-19 seem to be an emerging global crisis. Machine learning radiographic models have great potential for meticulous evaluation of post-COVID-19 interstitial lung disease (ILD).
In this multicenter, retrospective study, we included consecutive patients that had been evaluated 3 months following severe acute respiratory syndrome coronavirus 2 infection between 01/02/2021 and 12/5/2022. High-resolution computed tomography was evaluated through Imbio Lung Texture Analysis 2.1.
Two hundred thirty-two ( = 232) patients were analyzed. FVC% predicted was ≥80, between 60 and 79 and <60 in 74.2% ( = 172), 21.1% ( = 49), and 4.7% ( = 11) of the cohort, respectively. DLCO% predicted was ≥80, between 60 and 79 and <60 in 69.4% ( = 161), 15.5% ( = 36), and 15.1% ( = 35), respectively. Extent of ground glass opacities was ≥30% in 4.3% of patients ( = 10), between 5 and 29% in 48.7% of patients ( = 113) and <5% in 47.0% of patients ( = 109). The extent of reticulation was ≥30%, 5-29% and <5% in 1.3% ( = 3), 24.1% ( = 56), and 74.6% ( = 173) of the cohort, respectively. Patients ( = 13, 5.6%) with fibrotic lung disease and persistent functional impairment at the 6-month follow-up received antifibrotics and presented with an absolute change of +10.3 ( = 0.01) and +14.6 ( = 0.01) in FVC% predicted at 3 and 6 months after the initiation of antifibrotic.
Post-COVID-19-ILD represents an emerging entity. A substantial minority of patients presents with fibrotic lung disease and might experience benefit from antifibrotic initiation at the time point that fibrotic-like changes are "immature." Machine learning radiographic models could be of major significance for accurate radiographic evaluation and subsequently for the guidance of therapeutic approaches.
新型冠状病毒肺炎的急性后遗症似乎正在成为一场全球性危机。机器学习放射学模型在细致评估新型冠状病毒肺炎后间质性肺疾病(ILD)方面具有巨大潜力。
在这项多中心回顾性研究中,我们纳入了2021年1月2日至2022年5月12日期间在严重急性呼吸综合征冠状病毒2感染后3个月接受评估的连续患者。通过Imbio肺纹理分析2.1对高分辨率计算机断层扫描进行评估。
共分析了232例患者。该队列中,预测的用力肺活量(FVC)百分比≥80、在60至79之间以及<60的患者分别占74.2%(172例)、21.1%(49例)和4.7%(11例)。预测的一氧化碳弥散量(DLCO)百分比≥80、在60至79之间以及<60的患者分别占69.4%(161例)、15.5%(36例)和15.1%(35例)。磨玻璃影范围≥30%的患者占4.3%(10例),在5%至29%之间的患者占48.7%(113例),<5%的患者占47.0%(109例)。网状影范围≥30%、5%至29%和<5%的患者分别占该队列的1.3%(3例)、24.1%(56例)和74.6%(173例)。在6个月随访时患有纤维化肺病且存在持续功能损害的患者(13例,5.6%)接受了抗纤维化治疗,在开始抗纤维化治疗后3个月和6个月时,预测的FVC百分比的绝对变化分别为+10.3(P = 0.01)和+14.6(P = 0.01)。
新型冠状病毒肺炎后ILD是一种新出现的疾病实体。相当一部分患者患有纤维化肺病,在纤维化样改变“不成熟”的时间点开始使用抗纤维化药物可能会受益。机器学习放射学模型对于准确的放射学评估以及随后的治疗方法指导可能具有重要意义。