Suppr超能文献

小野区剂量学中的野区大小定义和野区输出因子。

On the field size definition and field output factors in small field dosimetry.

机构信息

Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

出版信息

Med Phys. 2023 Jun;50(6):3833-3841. doi: 10.1002/mp.16262. Epub 2023 Feb 20.

Abstract

BACKGROUND

There is a major conceptual difference between small-field and large field dosimetry that is, different definition of the field size. The dosimetry protocol IAEA TRS-483 recommends the use of the field size defined by measured dose profiles (full-width half maximum, FWHM) that is significantly different from conventional field size definition by the geometric field opening of MLC/Jaw at the isocenter. The application of the effective field size concept, S , was introduced by Cranmer-Sargison et al. (DOI:10.1016/j.radonc.2013.10.002) as a reporting mechanism for field output factors of rectangular fields. The study by Das et al. (DOI:10.1002/mp.15624) indicated the limitations of obtaining the field size by experimentally measuring FWHM, for example, the measured FWHM is smaller than beam geometric size, which is contradictory to what is expected as a result of partial occlusion of the primary photon source by the collimating devices. Cranmer-Sargison et al. and Das et al suggested that additional investigations are needed to evaluate its limitations.

PURPOSE

This study investigates the validity of the field size definition by FWHM and by MLC/Jaw opening and finds the pros and cons between these two methods to resolve the controversial issue.

METHODS

The FWHM can be obtained by measuring or calculating dose profiles. Using Monte Carlo simulations this study compares the field size obtained by FWHM and by field geometric field opening. The EGSnrc system is used to simulate 6 MV beam to generate square and rectangular fields from 5-30 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 to 30 mm). The calculated FWHM and output factors are compared with measurements obtained by a microSilicon detector.

RESULTS

The results show that field width (FWHM) derived from MC calculations generally agrees with machine geometric field width within 0.5 mm for square or rectangular fields with a minimum field width of ≥8 mm. For the extremely small fields with a minimum field width of 5 mm the discrepancies are up to 1.6 mm. The field width (FWHM) obtained by measuring dose profiles are unreliable for small fields due to the measurement uncertainties for an extremely small field. The effect of partial occlusion of the primary photon source by the jaws on the beam axis is clearly observed in the calculated dose profiles. For the extremely small field width of 5 mm, Monte Carlo predicted up to 10% exchange factor differences which are confirmed by the measurements.

CONCLUSION

The field size defined by the geometric opening of the beam-defining system, is still valid for small fields. The field size defined by geometric opening is independent of measurement uncertainties, independent of machine design, and highly reproducible. It is feasible to accurately tabulate the output factors as a function of geometric field opening thus eliminating user and detector choice for FWHM measurements. The field output factor of a small rectangular field cannot be related to an equivalent field size without considering the exchange factor due to partial occlusion of the photon source.

摘要

背景

小野和大野剂量学之间存在一个主要的概念差异,即野的定义不同。IAEA TRS-483 推荐使用剂量分布的测量半高全宽(FWHM)定义野的大小,这与在等中心处使用 MLC/Jaw 的几何野开口定义的传统野大小明显不同。Cranmer-Sargison 等人(DOI:10.1016/j.radonc.2013.10.002)引入了有效野大小概念 S,作为矩形野输出因子的报告机制。Das 等人的研究(DOI:10.1002/mp.15624)表明,通过实验测量 FWHM 获得野大小存在局限性,例如,测量的 FWHM 小于射束几何尺寸,这与由于准直器部分遮挡初级光子源而导致的预期结果相矛盾。Cranmer-Sargison 等人和 Das 等人建议需要进行额外的研究来评估其局限性。

目的

本研究通过 FWHM 和 MLC/Jaw 开口来验证野大小的定义,并比较这两种方法的优缺点,以解决这一有争议的问题。

方法

FWHM 可以通过测量或计算剂量分布来获得。本研究使用蒙特卡罗模拟比较了通过 FWHM 和射束几何野开口获得的野大小。使用 EGSnrc 系统模拟 6 MV 射束,从 5 到 30mm 以各种可能的排列(固定一个准直器,另一个准直器从 5 到 30mm 变化)生成方形和矩形野。将计算的 FWHM 和输出因子与使用微硅探测器获得的测量值进行比较。

结果

结果表明,对于最小野宽≥8mm 的方形或矩形野,MC 计算得出的射野宽度(FWHM)与机器几何射野宽度的偏差一般在 0.5mm 以内。对于最小野宽为 5mm 的极小野,偏差可达 1.6mm。由于对极小野的测量不确定性,通过测量剂量分布获得的野宽(FWHM)不可靠。在计算的剂量分布中可以清楚地观察到准直器对射束轴上的初级光子源的部分遮挡的影响。对于最小野宽为 5mm 的情况,蒙特卡罗预测的交换因子差异最大可达 10%,这与测量结果相符。

结论

由束流限定系统的几何开口定义的野大小仍然适用于小野。由几何开口定义的野大小与测量不确定度无关,与机器设计无关,且高度可重现。可以准确地将输出因子制表为几何野开口的函数,从而消除 FWHM 测量的用户和探测器选择。由于光子源的部分遮挡,小矩形野的输出因子不能与等效野大小相关联,而不考虑交换因子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验