Suppr超能文献

海森堡团簇模型中电子态的幺正群方法求解。

Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach.

机构信息

Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.

出版信息

J Chem Theory Comput. 2023 Feb 28;19(4):1218-1230. doi: 10.1021/acs.jctc.2c01132. Epub 2023 Feb 3.

Abstract

In this work ground and excited electronic states of Heisenberg cluster models, in the form of configuration interaction many-body wave functions, are characterized within the spin-adapted Graphical Unitary Group Approach framework, and relying on a novel combined unitary and symmetric group approach. Finite-size cluster models of well-defined point-group symmetry and of general local-spin are presented, including - triangular and tetrahedral clusters, which are often used to describe magnetic interactions in biological and biomimetic polynuclear transition metal clusters with unique catalytic activity, such as nitrogen fixation and photosynthesis. We show that a unique block-diagonal structure of the underlying Hamiltonian matrix in the spin-adapted basis emerges when an optimal lattice site ordering is chosen that reflects the internal symmetries of the model investigated. The block-diagonal structure is bound to the commutation relations between cumulative spin operators and the Hamiltonian operator, that in turn depend on the geometry of the cluster investigated. The many-body basis transformation, in the form of the orbital/site reordering, exposes such commutation relations. These commutation relations represent a rigorous and formal demonstration of the block-diagonal structure in Hamiltonian matrices and the compression of the corresponding spin-adapted many-body wave functions. As a direct consequence of the block-diagonal structure of the Hamiltonian matrix, it is possible to selectively optimize electronic excited states without the overhead of calculating the lower-energy states by simply relying on the initial for the targeted wave function. Additionally, more compact many-body wave functions are obtained. In extreme cases, electronic states are precisely described by a single configuration state function, despite the curse of dimensionality of the corresponding Hilbert space. These findings are crucial in the electronic structure theory framework, for they offer a conceptual route toward wave functions of reduced multireference character, that can be optimized more easily by approximated eigensolvers and are of more facile physical interpretation. They open the way to study larger and Hamiltonians of increasingly larger number of correlated electrons, while keeping the computational costs at their lowest. In particular, these elements will expand the potential of electronic structure methods in understanding magnetic interactions in exchange-coupled polynuclear transition metal clusters.

摘要

在这项工作中,我们使用组态相互作用多体波函数的形式,在自旋自适应图形幺正群方法的框架内,对 Heisenberg 团簇模型的基态和激发态进行了描述,并依赖于一种新的联合幺正和对称群方法。我们提出了具有明确点群对称性和一般局域自旋的有限团簇模型,包括三角和四面体团簇,这些团簇通常用于描述具有独特催化活性的多核过渡金属簇中的磁相互作用,例如固氮和光合作用。我们表明,当选择反映所研究模型内部对称性的最佳晶格点排序时,自旋自适应基下的基础哈密顿矩阵呈现出独特的块对角结构。这种块对角结构与累积自旋算符和哈密顿算符之间的交换关系有关,而交换关系又取决于所研究的团簇的几何形状。多体基变换,以轨道/位点重排的形式,揭示了这种交换关系。这些交换关系代表了哈密顿矩阵中块对角结构和相应自旋自适应多体波函数压缩的严格和正式证明。由于哈密顿矩阵的块对角结构,通过简单地依赖于目标波函数的初始 ,可以选择性地优化电子激发态,而无需计算较低能量态的开销。此外,还获得了更紧凑的多体波函数。在极端情况下,尽管对应 Hilbert 空间的维数诅咒,电子态可以由单个组态态函数精确描述。这些发现对于电子结构理论框架至关重要,因为它们为具有降低的多参考特征的波函数提供了一个概念性途径,可以通过近似本征求解器更轻松地进行优化,并且具有更易于物理解释。它们为研究更大的 和具有越来越多相关电子的 Hamiltonians 开辟了道路,同时将计算成本保持在最低水平。特别是,这些元素将扩大电子结构方法在理解交换耦合多核过渡金属簇中磁相互作用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c843/9979614/2e1d504c2d62/ct2c01132_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验