Suppr超能文献

将微生物生物地球化学循环基因与冰川前缘先锋植物的根际联系起来。

Linking microbial biogeochemical cycling genes to the rhizosphere of pioneering plants in a glacier foreland.

作者信息

Sun Shouqin, Ma Bin, Wang Genxu, Tan Xiangfeng

机构信息

State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

出版信息

Sci Total Environ. 2023 May 10;872:161944. doi: 10.1016/j.scitotenv.2023.161944. Epub 2023 Feb 1.

Abstract

Glacier retreat raises global concerns but brings about the moment to study soil and ecosystem development. In nutrient-limited glacier forelands, the adaptability of pioneering plant and microbial species is facilitated by their interactions, including rhizosphere effects, but the details of this adaptability are not yet understood. In the rhizosphere of five pioneering plants, we comprehensively deciphered the microbial taxonomic and functional compositions. Two nitrogen-fixing microbial genera, Bradyrhizobium and Mesorhizobium, were among the most abundant taxa in the rhizomicrobiome. Moreover, several rhizobial genera, including Rhizobium, Pararhizobium, Allohrizobium, and Sinorhizobium, head the list of major modules in microbial co-occurrence networks, highlighting the vital roles of nitrogen-cycling taxa in the rhizomicrobiome of pioneering plants. Microbial genes involved in nitrogen, sulfur, phosphorus, and methane cycles were simultaneously correlated with microbial community dissimilarity, and 12 functional pathways were detected with distinct relative abundances among soils. Zooming in on the nitrogen-cycling genes, nifW, narC, nasA, nasB, and nirA were mainly responsible for the significant differences between soils. Furthermore, soil pH and the carbon/nitrogen ratio were among the topsoil properties interacting with nitrogen and sulfur cycling gene dissimilarity. These results explicitly linked biogeochemical cycling genes to the rhizomicrobiome and soil properties, revealing the roles of these genes as microbial drivers in mediating rhizosphere soil-plant-microbiome interactions.

摘要

冰川消退引发全球关注,但也带来了研究土壤和生态系统发育的契机。在营养有限的冰川前缘,先锋植物和微生物物种通过它们之间的相互作用,包括根际效应,促进了自身的适应性,但这种适应性的细节尚不清楚。在五种先锋植物的根际,我们全面解析了微生物的分类和功能组成。两个固氮微生物属,慢生根瘤菌属和中生根瘤菌属,是根际微生物群落中最丰富的分类群。此外,包括根瘤菌属、副根瘤菌属、异根瘤菌属和中华根瘤菌属在内的几个根瘤菌属,在微生物共现网络的主要模块中名列前茅,突出了氮循环分类群在先锋植物根际微生物群落中的重要作用。参与氮、硫、磷和甲烷循环的微生物基因同时与微生物群落差异相关,并且在土壤中检测到12条具有不同相对丰度的功能途径。聚焦于氮循环基因,nifW、narC、nasA、nasB和nirA主要导致了土壤之间的显著差异。此外,土壤pH值和碳氮比是与氮和硫循环基因差异相互作用的表土性质之一。这些结果明确地将生物地球化学循环基因与根际微生物群落和土壤性质联系起来,揭示了这些基因作为微生物驱动因子在介导根际土壤-植物-微生物群落相互作用中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验