Department of Public Health, Miller School of Medicine, University of Miami, Coral Gables, USA.
Soffer Clinical Research Ctr, 1120 NW 14th St, Room 1059, Miami, FL, 33136-2107, USA.
AIDS Behav. 2023 Sep;27(9):2915-2931. doi: 10.1007/s10461-023-04015-1. Epub 2023 Feb 5.
The HIV/AIDS epidemic remains a major public health concern since the 1980s; untreated HIV infection has numerous consequences on quality of life. To optimize patients' health outcomes and to reduce HIV transmission, this study focused on vulnerable populations of people living with HIV (PLWH) and compared different predictive strategies for viral suppression using longitudinal or repeated measures. The four methods of predicting viral suppression are (1) including the repeated measures of each feature as predictors, (2) utilizing only the initial (baseline) value of the feature as predictor, (3) using the last observed value as the predictors and (4) using a growth curve estimated from the features to create individual-specific prediction of growth curves as features. This study suggested the individual-specific prediction of the growth curve performed the best in terms of lowest error rate on an independent set of test data.
自 20 世纪 80 年代以来,艾滋病病毒/艾滋病(HIV/AIDS)疫情仍然是一个主要的公共卫生关注点;未经治疗的 HIV 感染会对生活质量产生诸多影响。为了优化患者的健康结果并减少 HIV 传播,本研究关注 HIV 感染者(PLWH)中的弱势群体,并使用纵向或重复测量比较了不同的病毒抑制预测策略。预测病毒抑制的四种方法是:(1)将每个特征的重复测量作为预测因子;(2)仅将特征的初始(基线)值用作预测因子;(3)使用最后观察到的值作为预测因子;(4)使用从特征中估计的增长曲线来创建特征的个体特定预测的增长曲线。本研究表明,在独立的测试数据集上,基于最低错误率,个体特定的增长曲线预测表现最佳。