Suppr超能文献

基于深度学习的磁共振引导自适应放疗可交付自适应计划预测:一项可行性研究。

Deep learning-based prediction of deliverable adaptive plans for MR-guided adaptive radiotherapy: A feasibility study.

作者信息

Buchanan Laura, Hamdan Saleh, Zhang Ying, Chen Xinfeng, Li X Allen

机构信息

Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.

出版信息

Front Oncol. 2023 Jan 18;13:939951. doi: 10.3389/fonc.2023.939951. eCollection 2023.

Abstract

PURPOSE

Fast and automated plan generation is desirable in radiation therapy (RT), in particular, for MR-guided online adaptive RT (MRgOART) or real-time (intrafractional) adaptive RT (MRgRART), to reduce replanning time. The purpose of this study is to investigate the feasibility of using deep learning to quickly predict deliverable adaptive plans based on a target dose distribution for MRgOART/MRgRART.

METHODS

A conditional generative adversarial network (cGAN) was trained to predict the MLC leaf sequence corresponding to a target dose distribution based on reference plan created prior to MRgOART using a 1.5T MR-Linac. The training dataset included 50 ground truth dose distributions and corresponding beam parameters (aperture shapes and weights) created during MRgOART for 10 pancreatic cancer patients (each with five fractions). The model input was the dose distribution from each individual beam and the output was the predicted corresponding field segments with specific shape and weight. Patient-based leave-one-out-cross-validation was employed and for each model trained, four (44 training beams) out of five fractionated plans of the left-out patient were set aside for testing purposes. We deliberately kept a single fractionated plan in the training dataset so that the model could learn to replan the patient based on a prior plan. The model performance was evaluated by calculating the gamma passing rate of the ground truth dose vs. the dose from the predicted adaptive plan and calculating max and mean dose metrics.

RESULTS

The average gamma passing rate (95%, 3mm/3%) among 10 test cases was 88%. In general, we observed 95% of the prescription dose to PTV achieved with an average 7.6% increase of max and mean dose, respectively, to OARs for predicted replans. Complete adaptive plans were predicted in ≤20 s using a GTX 1660TI GPU.

CONCLUSION

We have proposed and demonstrated a deep learning method to generate adaptive plans automatically and rapidly for MRgOART. With further developments using large datasets and the inclusion of patient contours, the method may be implemented to accelerate MRgOART process or even to facilitate MRgRART.

摘要

目的

在放射治疗(RT)中,特别是对于磁共振引导的在线自适应放疗(MRgOART)或实时(分次内)自适应放疗(MRgRART),快速且自动化的计划生成是很有必要的,以减少重新计划时间。本研究的目的是探讨使用深度学习基于MRgOART/MRgRART的目标剂量分布快速预测可交付的自适应计划的可行性。

方法

训练一个条件生成对抗网络(cGAN),以根据使用1.5T MR直线加速器在MRgOART之前创建的参考计划,预测与目标剂量分布相对应的多叶准直器(MLC)叶片序列。训练数据集包括为10例胰腺癌患者(每人5个分次)在MRgOART期间创建的50个真实剂量分布和相应的射束参数(孔径形状和权重)。模型输入是每个单独射束的剂量分布,输出是预测的具有特定形状和权重的相应射野段。采用基于患者的留一法交叉验证,对于每个训练的模型,将留出患者的五个分次计划中的四个(44个训练射束)留作测试之用。我们特意在训练数据集中保留单个分次计划,以便模型能够基于先前的计划学习为患者重新计划。通过计算真实剂量与预测的自适应计划剂量之间的伽马通过率以及计算最大剂量和平均剂量指标来评估模型性能。

结果

10个测试病例中的平均伽马通过率(95%,3mm/3%)为88%。一般来说,我们观察到预测的重新计划使PTV达到了95%的处方剂量,同时OAR的最大剂量和平均剂量分别平均增加了7.6%。使用GTX 1660TI GPU在≤20秒内预测出完整的自适应计划。

结论

我们提出并证明了一种深度学习方法,可自动快速地为MRgOART生成自适应计划。随着使用大型数据集的进一步发展以及纳入患者轮廓,该方法可能会被用于加速MRgOART过程,甚至促进MRgRART。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f54f/9889647/7d3334b7d144/fonc-13-939951-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验