Suppr超能文献

基于图卷积注意力网络识别微生物与疾病的关联:以肝硬化和癫痫为例

Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy.

作者信息

Shi Kai, Li Lin, Wang Zhengfeng, Chen Huazhou, Chen Zilin, Fang Shuanfeng

机构信息

College of Information Science and Engineering, Guilin University of Technology, Guilin, China.

Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, China.

出版信息

Front Neurosci. 2023 Jan 19;16:1124315. doi: 10.3389/fnins.2022.1124315. eCollection 2022.

Abstract

The interactions between the microbiota and the human host can affect the physiological functions of organs (such as the brain, liver, gut, etc.). Accumulating investigations indicate that the imbalance of microbial community is closely related to the occurrence and development of diseases. Thus, the identification of potential links between microbes and diseases can provide insight into the pathogenesis of diseases. In this study, we propose a deep learning framework (MDAGCAN) based on graph convolutional attention network to identify potential microbe-disease associations. In MDAGCAN, we first construct a heterogeneous network consisting of the known microbe-disease associations and multi-similarity fusion networks of microbes and diseases. Then, the node embeddings considering the neighbor information of the heterogeneous network are learned by applying graph convolutional layers and graph attention layers. Finally, a bilinear decoder using node embedding representations reconstructs the unknown microbe-disease association. Experiments show that our method achieves reliable performance with average AUCs of 0.9778 and 0.9454 ± 0.0038 in the frameworks of Leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. Furthermore, we apply MDAGCAN to predict latent microbes for two high-risk human diseases, i.e., liver cirrhosis and epilepsy, and results illustrate that 16 and 17 out of the top 20 predicted microbes are verified by published literatures, respectively. In conclusion, our method displays effective and reliable prediction performance and can be expected to predict unknown microbe-disease associations facilitating disease diagnosis and prevention.

摘要

微生物群与人类宿主之间的相互作用会影响器官(如大脑、肝脏、肠道等)的生理功能。越来越多的研究表明,微生物群落的失衡与疾病的发生发展密切相关。因此,识别微生物与疾病之间的潜在联系有助于深入了解疾病的发病机制。在本研究中,我们提出了一种基于图卷积注意力网络的深度学习框架(MDAGCAN)来识别潜在的微生物-疾病关联。在MDAGCAN中,我们首先构建了一个由已知的微生物-疾病关联以及微生物和疾病的多相似性融合网络组成的异质网络。然后,通过应用图卷积层和图注意力层来学习考虑异质网络邻居信息的节点嵌入。最后,使用节点嵌入表示的双线性解码器重建未知的微生物-疾病关联。实验表明,在留一法交叉验证(LOOCV)和五折交叉验证(5折CV)框架下,我们的方法分别取得了可靠的性能,平均AUC分别为0.9778和0.9454±0.0038。此外,我们将MDAGCAN应用于预测两种高危人类疾病(即肝硬化和癫痫)的潜在微生物,结果表明,在前20个预测微生物中,分别有16个和17个被已发表的文献证实。总之,我们的方法显示出有效且可靠的预测性能,有望预测未知的微生物-疾病关联,促进疾病的诊断和预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f61/9892757/e2ba53592041/fnins-16-1124315-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验