文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种微生物-疾病关联预测的新方法:纳入潜在关系的表征学习。

A new approach for microbe-disease association prediction: incorporating representation learning of latent relationships.

作者信息

Liu Shaopeng, Hu Wanlu, Wang Chun-Chun, Zhuo Linlin, Lu Xu

机构信息

School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China.

School of Science, Jiangnan University, Wuxi, 214122, China.

出版信息

BMC Med Inform Decis Mak. 2025 Jul 18;25(1):270. doi: 10.1186/s12911-025-03093-6.


DOI:10.1186/s12911-025-03093-6
PMID:40682015
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12275299/
Abstract

BACKGROUND: Predicting associations between microbes and diseases is crucial for clinical diagnosis and therapy. However, biological experiments are time-intensive, necessitating efficient computational models. Traditional models rely on existing microbe-disease associations, but limited data often restricts their effectiveness. This scarcity of information hinders the construction of a comprehensive association network, prompting the need for innovative solutions. METHODS: We propose RKGATMDA, a deep learning framework for microbe-disease association prediction. Utilizing a graph attention network, RKGATMDA learns representations from the microbe-disease association network. To address the limitation of insufficient association information, we introduce Random K-Nearest Neighbors to uncover latent relationships, enhancing representation learning. During each training iteration, associations are expanded based on attention scores, and a multi-head attention mechanism integrates diverse features, enabling RKGATMDA to capture comprehensive interactions between microbes and diseases. RESULTS: Results Experimental results show that RKGATMDA achieves AUC values of 0.8906 in 5-fold cross-validation, 0.8999 in global leave-one-out cross-validation, and 0.7246 in local leave-one-out cross-validation, outperforming previous methods such as ABHMDA, KATZHMDA, LRLSHMDA, BiRWHMDA, and NTSHMDA. Case studies on asthma, colon cancer, and colorectal carcinoma further validate its predictive power. CONCLUSION: Our findings demonstrate that RKGATMDA effectively predicts microbe-disease associations, with at least 9 out of the top 10 prediction pairs validated by biological evidence. This highlights the potential of RKGATMDA as a valuable tool in microbial-disease research, offering a promising approach for identifying novel associations and advancing our understanding of microbial pathogenesis.

摘要

背景:预测微生物与疾病之间的关联对于临床诊断和治疗至关重要。然而,生物学实验耗时费力,因此需要高效的计算模型。传统模型依赖于现有的微生物-疾病关联,但数据有限常常限制了它们的有效性。这种信息稀缺阻碍了构建全面的关联网络,促使人们需要创新的解决方案。 方法:我们提出了RKGATMDA,这是一种用于微生物-疾病关联预测的深度学习框架。利用图注意力网络,RKGATMDA从微生物-疾病关联网络中学习表示。为了解决关联信息不足的局限性,我们引入随机K近邻来揭示潜在关系,增强表示学习。在每次训练迭代中,基于注意力分数扩展关联,并且多头注意力机制整合不同特征,使RKGATMDA能够捕捉微生物与疾病之间的全面相互作用。 结果:实验结果表明,RKGATMDA在5折交叉验证中的AUC值为0.8906,在全局留一法交叉验证中的AUC值为0.8999,在局部留一法交叉验证中的AUC值为0.7246,优于先前的方法,如ABHMDA、KATZHMDA、LRLSHMDA、BiRWHMDA和NTSHMDA。对哮喘、结肠癌和直肠癌的案例研究进一步验证了其预测能力。 结论:我们的研究结果表明,RKGATMDA能够有效地预测微生物-疾病关联,前10个预测对中至少有9个得到了生物学证据的验证。这突出了RKGATMDA作为微生物-疾病研究中有价值工具的潜力,为识别新关联和推进我们对微生物发病机制的理解提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/c7669473ae9d/12911_2025_3093_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/a06b59f98e66/12911_2025_3093_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/3a85a04a1983/12911_2025_3093_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/71d35e2c6b3d/12911_2025_3093_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/c7669473ae9d/12911_2025_3093_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/a06b59f98e66/12911_2025_3093_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/3a85a04a1983/12911_2025_3093_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/71d35e2c6b3d/12911_2025_3093_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6297/12275299/c7669473ae9d/12911_2025_3093_Fig3_HTML.jpg

相似文献

[1]
A new approach for microbe-disease association prediction: incorporating representation learning of latent relationships.

BMC Med Inform Decis Mak. 2025-7-18

[2]
Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning.

Comput Biol Chem. 2025-6-30

[3]
Short-Term Memory Impairment

2025-1

[4]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

[5]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[6]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
Long-term care plan recommendation for older adults with disabilities: a bipartite graph transformer and self-supervised approach.

J Am Med Inform Assoc. 2025-4-1

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

本文引用的文献

[1]
DeepWalk-Based Graph Embeddings for miRNA-Disease Association Prediction Using Deep Neural Network.

Biomedicines. 2025-2-20

[2]
Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association.

Biomedicines. 2025-1-8

[3]
MADGAN:A microbe-disease association prediction model based on generative adversarial networks.

Front Microbiol. 2023-3-23

[4]
Analysis of Alterations of the Gut Microbiota in Moderate to Severe Psoriasis Patients Using 16S rRNA Gene Sequencing.

Indian J Dermatol. 2022

[5]
MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm.

Comput Struct Biotechnol J. 2023-1-2

[6]
Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy.

Front Neurosci. 2023-1-19

[7]
Intestinal dysbiosis exacerbates the pathogenesis of psoriasis-like phenotype through changes in fatty acid metabolism.

Signal Transduct Target Ther. 2023-1-30

[8]
Graph neural network and multi-data heterogeneous networks for microbe-disease prediction.

Front Microbiol. 2022-12-22

[9]
NCMD: Node2vec-Based Neural Collaborative Filtering for Predicting MiRNA-Disease Association.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[10]
MDMF: Predicting miRNA-Disease Association Based on Matrix Factorization with Disease Similarity Constraint.

J Pers Med. 2022-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索