Suppr超能文献

基于随机收缩鲸鱼优化算法和罗森布罗克方法的新冠肺炎疾病预测

Whale optimization with random contraction and Rosenbrock method for COVID-19 disease prediction.

作者信息

Zhang Meilin, Wu Qianxi, Chen Huiling, Heidari Ali Asghar, Cai Zhennao, Li Jiaren, Md Abdelrahim Elsaid, Mansour Romany F

机构信息

Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.

Wenzhou People's Hospital, Wenzhou, Zhejiang 325099, China.

出版信息

Biomed Signal Process Control. 2023 May;83:104638. doi: 10.1016/j.bspc.2023.104638. Epub 2023 Feb 1.

Abstract

Coronavirus Disease 2019 (COVID-19), instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has hugely impacted global public health. To identify and intervene in critically ill patients early, this paper proposes an efficient, intelligent prediction model based on the machine learning approach, which combines the improved whale optimization algorithm (RRWOA) with the k-nearest neighbor (KNN) classifier. In order to improve the problem that WOA is prone to fall into local optimum, an improved version named RRWOA is proposed based on the random contraction strategy (RCS) and the Rosenbrock method. To verify the capability of the proposed algorithm, RRWOA is tested against nine classical metaheuristics, nine advanced metaheuristics, and seven well-known WOA variants based on 30 IEEE CEC2014 competition functions, respectively. The experimental results in mean, standard deviation, the Friedman test, and the Wilcoxon signed-rank test are considered, proving that RRWOA won first place on 18, 24, and 25 test functions, respectively. In addition, a binary version of the algorithm, called BRRWOA, is developed for feature selection problems. An efficient prediction model based on BRRWOA and KNN classifier is proposed and compared with seven existing binary metaheuristics based on 15 datasets of UCI repositories. The experimental results show that the proposed algorithm obtains the smallest fitness value in eleven datasets and can solve combinatorial optimization problems, indicating that it still performs well in discrete cases. More importantly, the model was compared with five other algorithms on the COVID-19 dataset. The experiment outcomes demonstrate that the model offers a scientific framework to support clinical diagnostic decision-making. Therefore, RRWOA is an effectively improved optimizer with efficient value.

摘要

2019冠状病毒病(COVID-19)由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发,对全球公共卫生造成了巨大影响。为了早期识别和干预重症患者,本文提出了一种基于机器学习方法的高效智能预测模型,该模型将改进的鲸鱼优化算法(RRWOA)与k近邻(KNN)分类器相结合。为了改善鲸鱼优化算法容易陷入局部最优的问题,基于随机收缩策略(RCS)和罗森布罗克方法提出了一种改进版本RRWOA。为了验证所提算法的性能,分别基于30个IEEE CEC2014竞赛函数,将RRWOA与九种经典元启发式算法、九种先进元启发式算法和七种著名的鲸鱼优化算法变体进行了测试。考虑了均值、标准差、弗里德曼检验和威尔科克森符号秩检验的实验结果,证明RRWOA在18、24和25个测试函数上分别获得第一名。此外,还针对特征选择问题开发了该算法的二进制版本,称为BRRWOA。提出了一种基于BRRWOA和KNN分类器的高效预测模型,并与基于UCI库的15个数据集的七种现有二进制元启发式算法进行了比较。实验结果表明,所提算法在11个数据集中获得了最小适应度值,能够解决组合优化问题,表明其在离散情况下仍表现良好。更重要的是,该模型在COVID-19数据集上与其他五种算法进行了比较。实验结果表明,该模型提供了一个科学框架来支持临床诊断决策。因此,RRWOA是一种有效改进的具有高效价值的优化器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e03/9889265/dc5c1b84d6d4/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验