文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于识别中国农村地区非重症和重症2019冠状病毒病患者的有效机器学习方法:温州回顾性研究

An Effective Machine Learning Approach for Identifying Non-Severe and Severe Coronavirus Disease 2019 Patients in a Rural Chinese Population: The Wenzhou Retrospective Study.

作者信息

Wu Peiliang, Ye Hua, Cai Xueding, Li Chengye, Li Shimin, Chen Mengxiang, Wang Mingjing, Heidari Ali Asghar, Chen Mayun, Li Jifa, Chen Huiling, Huang Xiaoying, Wang Liangxing

机构信息

Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000 China.

Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical University Yueqing 325600 China.

出版信息

IEEE Access. 2021 Mar 19;9:45486-45503. doi: 10.1109/ACCESS.2021.3067311. eCollection 2021.


DOI:10.1109/ACCESS.2021.3067311
PMID:34786313
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8545214/
Abstract

This paper has proposed an effective intelligent prediction model that can well discriminate and specify the severity of Coronavirus Disease 2019 (COVID-19) infection in clinical diagnosis and provide a criterion for clinicians to weigh scientific and rational medical decision-making. With indicators as the age and gender of the patients and 26 blood routine indexes, a severity prediction framework for COVID-19 is proposed based on machine learning techniques. The framework consists mainly of a random forest and a support vector machine (SVM) model optimized by a slime mould algorithm (SMA). When the random forest was used to identify the key factors, SMA was employed to train an optimal SVM model. Based on the COVID-19 data, comparative experiments were conducted between RF-SMA-SVM and several well-known machine learning algorithms performed. The results indicate that the proposed RF-SMA-SVM not only achieves better classification performance and higher stability on four metrics, but also screens out the main factors that distinguish severe COVID-19 patients from non-severe ones. Therefore, there is a conclusion that the RF-SMA-SVM model can provide an effective auxiliary diagnosis scheme for the clinical diagnosis of COVID-19 infection.

摘要

本文提出了一种有效的智能预测模型,该模型能够在临床诊断中很好地鉴别和明确2019冠状病毒病(COVID-19)感染的严重程度,并为临床医生权衡科学合理的医疗决策提供一个标准。以患者的年龄、性别以及26项血常规指标作为指标,基于机器学习技术提出了一种COVID-19严重程度预测框架。该框架主要由随机森林和通过黏菌算法(SMA)优化的支持向量机(SVM)模型组成。当使用随机森林识别关键因素时,采用SMA训练最优的SVM模型。基于COVID-19数据,在RF-SMA-SVM与几种著名的机器学习算法之间进行了对比实验。结果表明,所提出的RF-SMA-SVM不仅在四个指标上取得了更好的分类性能和更高的稳定性,还筛选出了区分重症COVID-19患者和非重症患者的主要因素。因此,得出结论:RF-SMA-SVM模型可为COVID-19感染的临床诊断提供有效的辅助诊断方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/c042dab19be9/chen8-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/8279675798fb/chen1-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/737468910fa8/chen2-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/9f0aba190894/chen3-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/7dc084b94bb0/chen4-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/7ffc3af38675/chen5-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/c1beec1d96f6/chen6-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/377c5c477967/chen7-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/c042dab19be9/chen8-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/8279675798fb/chen1-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/737468910fa8/chen2-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/9f0aba190894/chen3-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/7dc084b94bb0/chen4-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/7ffc3af38675/chen5-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/c1beec1d96f6/chen6-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/377c5c477967/chen7-3067311.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af1d/8545214/c042dab19be9/chen8-3067311.jpg

相似文献

[1]
An Effective Machine Learning Approach for Identifying Non-Severe and Severe Coronavirus Disease 2019 Patients in a Rural Chinese Population: The Wenzhou Retrospective Study.

IEEE Access. 2021-3-19

[2]
Research on Supply Chain Financial Risk Prevention Based on Machine Learning.

Comput Intell Neurosci. 2023

[3]
Advancing intrauterine adhesion severity prediction: Integrative machine learning approach with hysteroscopic cold knife system, clinical characteristics and hematological parameters.

Comput Biol Med. 2024-7

[4]
Comparing different machine learning techniques for predicting COVID-19 severity.

Infect Dis Poverty. 2022-2-17

[5]
The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM.

Molecules. 2022-6-25

[6]
Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.

BMC Complement Altern Med. 2012-8-16

[7]
Application of machine learning algorithms in predicting HIV infection among men who have sex with men: Model development and validation.

Front Public Health. 2022

[8]
A new hybrid ensemble machine-learning model for severity risk assessment and post-COVID prediction system.

Math Biosci Eng. 2022-4-13

[9]
CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter.

IEEE Access. 2021-2-9

[10]
Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.

Comput Methods Programs Biomed. 2022-10

引用本文的文献

[1]
Feature selection for effective prediction of SARS-COV-2 using machine learning.

Genes Genomics. 2024-3

[2]
Whale optimization with random contraction and Rosenbrock method for COVID-19 disease prediction.

Biomed Signal Process Control. 2023-5

[3]
ACSN: Attention capsule sampling network for diagnosing COVID-19 based on chest CT scans.

Comput Biol Med. 2023-2

[4]
Cross-Tissue Analysis Using Machine Learning to Identify Novel Biomarkers for Knee Osteoarthritis.

Comput Math Methods Med. 2022

[5]
Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine.

Comput Biol Med. 2022-3

[6]
Does COVID-19 Clinical Status Associate with Outcome Severity? An Unsupervised Machine Learning Approach for Knowledge Extraction.

J Pers Med. 2021-12-17

[7]
Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis.

Sci Rep. 2021-10-12

[8]
Classification Framework for Healthy Hairs and Alopecia Areata: A Machine Learning (ML) Approach.

Comput Math Methods Med. 2021

[9]
Ant colony optimization with Cauchy and greedy Levy mutations for multilevel COVID 19 X-ray image segmentation.

Comput Biol Med. 2021-9

[10]
Diagnosis and prediction of COVID-19 severity: can biochemical tests and machine learning be used as prognostic indicators?

Comput Biol Med. 2021-7

本文引用的文献

[1]
Diagnosing Coronavirus Disease 2019 (COVID-19): Efficient Harris Hawks-Inspired Fuzzy K-Nearest Neighbor Prediction Methods.

IEEE Access. 2021-1-19

[2]
Forecasting and Evaluating Multiple Interventions for COVID-19 Worldwide.

Front Artif Intell. 2020-5-22

[3]
Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world.

Nonlinear Dyn. 2020

[4]
Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions.

J Thorac Dis. 2020-3

[5]
Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis.

J Med Virol. 2020-10

[6]
Neutrophil or platelet-to-lymphocyte ratios in blood are associated with poor prognosis of pulmonary large cell neuroendocrine carcinoma.

Transl Lung Cancer Res. 2020-2

[7]
The resilience of the Spanish health system against the COVID-19 pandemic.

Lancet Public Health. 2020-5

[8]
Practical laboratory considerations amidst the COVID-19 outbreak: early experience from Singapore.

J Clin Pathol. 2021-4

[9]
Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China.

Clin Infect Dis. 2020-7-28

[10]
Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.

Lancet. 2020-3-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索