Hintz Heather, Bower Jamey, Tang Jinghua, LaLama Matthew, Sevov Christo, Zhang Shiyu
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States.
Chem Catal. 2023 Jan 19;3(1). doi: 10.1016/j.checat.2022.100491. Epub 2023 Jan 9.
We report the systematic development of an electrooxidative methodology that translates stoichiometric C-H fluorination reactivity of an isolable Cu fluoride complex into a catalytic process. The critical challenges of electrocatalysis with a highly reactive Cu species were addressed by the judicious selection of electrolyte, F source, and sacrificial electron acceptor. Catalyst-controlled C-H fluorination occurs with a preference for hydridic C-H bonds with high bond dissociation energies over weaker but less hydridic C-H bonds. The selectivity is driven by an oxidative asynchronous proton-coupled elelctron transfer (PCET) at an electrophilic Cu-F complex. We further demonstrate that the asynchronicity factor of hydrogen atom transfer can be used as a guideline to rationalize the selectivity of C-H fluorination.
我们报道了一种电氧化方法的系统开发,该方法将可分离的氟化铜配合物的化学计量C-H氟化反应性转化为催化过程。通过明智地选择电解质、氟源和牺牲电子受体,解决了使用高活性铜物种进行电催化的关键挑战。催化剂控制的C-H氟化反应优先发生在具有高键解离能的氢化C-H键上,而不是较弱但氢化程度较低的C-H键上。这种选择性是由亲电Cu-F配合物处的氧化异步质子耦合电子转移(PCET)驱动的。我们进一步证明,氢原子转移的异步性因子可作为合理化C-H氟化选择性的指导原则。