Department of Internal Medicine I (M.D., E.W., D.E.A., L.R., L.P., U.H., S.F., G.C.R.), University Hospital Würzburg, Germany.
Comprehensive Heart Failure Center (M.D., E.W., D.E.A., L.R., L.P., U.H., S.F., G.C.R.), University Hospital Würzburg, Germany.
Circ Res. 2023 Mar 3;132(5):565-582. doi: 10.1161/CIRCRESAHA.122.322183. Epub 2023 Feb 6.
In the past years, several studies investigated how distinct immune cell subsets affects post-myocardial infarction repair. However, whether and how the tissue environment controls these local immune responses has remained poorly understood. We sought to investigate how antigen-specific T-helper cells differentiate under myocardial milieu's influence.
We used a transgenic T cell receptor (TCR-M) model and major histocompatibility complex-II tetramers, both myosin-specific, combined with single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq]) and functional phenotyping to elucidate how the antigen-specific CD4 T cells differentiate in the murine infarcted myocardium and influence tissue repair. Additionally, we transferred proinflammatory versus regulatory predifferentiated TCR-M-cells to dissect how they specially contribute to post-myocardial infarction inflammation.
Flow cytometry and scRNA-/TCR-seq analyses revealed that transferred TCR-M cells acquired an induced regulatory phenotype (induced regulatory T cell) in the infarcted myocardium and blunted local inflammation. Myocardial TCR-M cells differentiated into 2 main lineages enriched with either cell activation and profibrotic transcripts (eg, ) or suppressor immune checkpoints (eg, ), which we also found in human myocardial tissue. These cells produced high levels of LAP (latency-associated peptide) and inhibited IL-17 (interleukin-17) responses. Endogenous myosin-specific T-helper cells, identified using genetically barcoded tetramers, also accumulated in infarcted hearts and exhibited a regulatory phenotype. Notably, TCR-M cells that were predifferentiated toward a regulatory phenotype in vitro maintained stable in vivo FOXP3 (Forkhead box P3) expression and anti-inflammatory activity whereas T17 partially converted toward a regulatory phenotype in the injured myocardium. Overall, the myosin-specific Tregs dampened post-myocardial infarction inflammation, suppressed neighboring T cells, and were associated with improved cardiac function.
These findings provide novel evidence that the heart and its draining lymph nodes actively shape local immune responses by promoting the differentiation of antigen-specific Tregs poised with suppressive function.
在过去的几年中,有几项研究调查了不同的免疫细胞亚群如何影响心肌梗死后的修复。然而,组织环境是否以及如何控制这些局部免疫反应仍知之甚少。我们试图研究抗原特异性辅助性 T 细胞在心肌环境影响下如何分化。
我们使用了一种转基因 T 细胞受体(TCR-M)模型和主要组织相容性复合物-II 四聚体,两者都是肌球蛋白特异性的,结合单细胞转录组学(单细胞 RNA 测序 [scRNA-seq])和功能表型分析,以阐明抗原特异性 CD4 T 细胞在小鼠梗死心肌中如何分化并影响组织修复。此外,我们还转导了促炎型和调节型预分化 TCR-M 细胞,以剖析它们如何专门参与心肌梗死后的炎症反应。
流式细胞术和 scRNA-/TCR-seq 分析显示,转导的 TCR-M 细胞在梗死心肌中获得了诱导的调节表型(诱导调节性 T 细胞),并减弱了局部炎症。心肌 TCR-M 细胞分化为 2 个主要谱系,其中富含细胞激活和促纤维化转录本(例如,)或抑制性免疫检查点(例如,),我们在人类心肌组织中也发现了这些细胞。这些细胞产生高水平的 LAP(潜伏期相关肽)并抑制 IL-17(白细胞介素-17)反应。使用遗传条形码四聚体鉴定的内源性肌球蛋白特异性辅助性 T 细胞也在梗死心脏中积累,并表现出调节表型。值得注意的是,体外预分化为调节表型的 TCR-M 细胞在体内保持稳定的 FOXP3(叉头框 P3)表达和抗炎活性,而 T17 在损伤的心肌中部分转化为调节表型。总的来说,肌球蛋白特异性 Tregs 抑制心肌梗死后的炎症反应,抑制邻近的 T 细胞,并与改善心功能相关。
这些发现提供了新的证据,表明心脏及其引流的淋巴结通过促进具有抑制功能的抗原特异性 Tregs 的分化,积极塑造局部免疫反应。