Department of Informatics, University of Sussex, Brighton, UK.
Nat Commun. 2021 May 7;12(1):2569. doi: 10.1038/s41467-021-22592-4.
Effective decision making in a changing environment demands that accurate predictions are learned about decision outcomes. In Drosophila, such learning is orchestrated in part by the mushroom body, where dopamine neurons signal reinforcing stimuli to modulate plasticity presynaptic to mushroom body output neurons. Building on previous mushroom body models, in which dopamine neurons signal absolute reinforcement, we propose instead that dopamine neurons signal reinforcement prediction errors by utilising feedback reinforcement predictions from output neurons. We formulate plasticity rules that minimise prediction errors, verify that output neurons learn accurate reinforcement predictions in simulations, and postulate connectivity that explains more physiological observations than an experimentally constrained model. The constrained and augmented models reproduce a broad range of conditioning and blocking experiments, and we demonstrate that the absence of blocking does not imply the absence of prediction error dependent learning. Our results provide five predictions that can be tested using established experimental methods.
在不断变化的环境中做出有效决策需要对决策结果进行准确预测。在果蝇中,这种学习部分由蘑菇体协调,多巴胺神经元向蘑菇体输出神经元的突触前传递信号,以增强刺激的可塑性。基于之前的蘑菇体模型,其中多巴胺神经元信号表示绝对增强,我们提出相反的观点,即多巴胺神经元通过利用来自输出神经元的反馈增强预测来表示增强预测误差。我们制定了最小化预测误差的可塑性规则,在模拟中验证了输出神经元学习准确增强预测,并假设了连接方式,该连接方式比实验约束模型解释了更多的生理观察结果。受约束和增强的模型再现了广泛的条件作用和阻断实验,我们证明了缺乏阻断并不意味着不存在依赖于预测误差的学习。我们的结果提供了五个可以使用既定实验方法进行测试的预测。