Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487.
Department of Human Nutrition and Hospitality Management, The University of Alabama, Tuscaloosa, AL 35487.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2210712120. doi: 10.1073/pnas.2210712120. Epub 2023 Feb 6.
Whole-exome sequencing of Parkinson's disease (PD) patient DNA identified single-nucleotide polymorphisms (SNPs) in the tyrosine nonreceptor kinase-2 () gene. Although this kinase had a previously demonstrated activity in preventing the endocytosis of the dopamine reuptake transporter (DAT), a causal role for TNK2-associated dysfunction in PD remains unresolved. We postulated the dopaminergic neurodegeneration resulting from patient-associated variants in were a consequence of aberrant or prolonged TNK2 overactivity, the latter being a failure in TNK2 degradation by an E3 ubiquitin ligase, neuronal precursor cell-expressed developmentally down-regulated-4 (NEDD4). Interestingly, systemic RNA interference protein-3 (SID-3) is the sole TNK2 ortholog in the nematode , where it is an established effector of epigenetic gene silencing mediated through the dsRNA-transporter, SID-1. We hypothesized that TNK2/SID-3 represents a node of integrated dopaminergic and epigenetic signaling essential to neuronal homeostasis. Use of a TNK2 inhibitor (AIM-100) or a NEDD4 activator [N-aryl benzimidazole 2 (NAB2)] in bioassays for either dopamine- or dsRNA-uptake into worm dopaminergic neurons revealed that mutants displayed robust neuroprotection from 6-hydroxydopamine (6-OHDA) exposures, as did AIM-100 or NAB2-treated wild-type animals. Furthermore, NEDD4 activation by NAB2 in rat primary neurons correlated to a reduction in TNK2 levels and the attenuation of 6-OHDA neurotoxicity. CRISPR-edited nematodes engineered to endogenously express SID-3 variants analogous to PD-associated SNPs exhibited enhanced susceptibility to dopaminergic neurodegeneration and circumvented the RNAi resistance characteristic of SID-3 dysfunction. This research exemplifies a molecular etiology for PD whereby dopaminergic and epigenetic signaling are coordinately regulated to confer susceptibility or resilience to neurodegeneration.
全外显子组测序鉴定出帕金森病(PD)患者 DNA 中的酪氨酸非受体激酶-2(TNK2)基因的单核苷酸多态性(SNP)。虽然这种激酶先前已被证明具有防止多巴胺再摄取转运体(DAT)内吞作用的活性,但与 TNK2 相关功能障碍在 PD 中的因果作用仍未解决。我们假设患者相关变体在 中的多巴胺能神经退行性变是由于 TNK2 过度活性异常或延长所致,后者是由于 E3 泛素连接酶神经元前体细胞表达的发育下调-4(NEDD4)降解失败所致。有趣的是,全身性 RNA 干扰蛋白-3(SID-3)是线虫 中的 TNK2 直系同源物,它是通过 dsRNA 转运蛋白 SID-1 介导的表观遗传基因沉默的既定效应物。我们假设 TNK2/SID-3 代表整合多巴胺能和表观遗传信号的节点,对神经元内稳态至关重要。在生物测定中使用 TNK2 抑制剂(AIM-100)或 NEDD4 激活剂 [N-芳基苯并咪唑 2(NAB2)] 来摄取多巴胺或 dsRNA 进入线虫多巴胺能神经元,结果表明 突变体对 6-羟多巴胺(6-OHDA)暴露表现出强大的神经保护作用,AIM-100 或 NAB2 处理的野生型动物也是如此。此外,NAB2 对大鼠原代神经元中 NEDD4 的激活与 TNK2 水平的降低和 6-OHDA 神经毒性的减弱相关。内源性表达类似于 PD 相关 SNP 的 SID-3 变体的 CRISPR 编辑线虫表现出对多巴胺能神经退行性变的易感性增加,并规避了 SID-3 功能障碍的 RNAi 抗性特征。这项研究说明了 PD 的分子病因学,其中多巴胺能和表观遗传信号协同调节,以赋予对神经退行性变的易感性或弹性。