Biobank Group, Department of Proteomic Research, Institute of Biomedical Chemistry, 10 Pogodinskaya Str., Bld. 8, Moscow, Russian Federation, 119121.
Alexeev N.A. 1St Clinics for Mental Health, 2 Zagorodnoe Road, Moscow, Russian Federation, 115119.
Sci Rep. 2023 Feb 6;13(1):2139. doi: 10.1038/s41598-023-29117-7.
Despite of multiple systematic studies of schizophrenia based on proteomics, metabolomics, and genome-wide significant loci, reconstruction of underlying mechanism is still a challenging task. Combination of the advanced data for quantitative proteomics, metabolomics, and genome-wide association study (GWAS) can enhance the current fundamental knowledge about molecular pathogenesis of schizophrenia. In this study, we utilized quantitative proteomic and metabolomic assay, and high throughput genotyping for the GWAS study. We identified 20 differently expressed proteins that were validated on an independent cohort of patients with schizophrenia, including ALS, A1AG1, PEDF, VTDB, CERU, APOB, APOH, FASN, GPX3, etc. and almost half of them are new for schizophrenia. The metabolomic survey revealed 18 group-specific compounds, most of which were the part of transformation of tyrosine and steroids with the prevalence to androgens (androsterone sulfate, thyroliberin, thyroxine, dihydrotestosterone, androstenedione, cholesterol sulfate, metanephrine, dopaquinone, etc.). The GWAS assay mostly failed to reveal significantly associated loci therefore 52 loci with the smoothened p < 10 were fractionally integrated into proteome-metabolome data. We integrated three omics layers and powered them by the quantitative analysis to propose a map of molecular events associated with schizophrenia psychopathology. The resulting interplay between different molecular layers emphasizes a strict implication of lipids transport, oxidative stress, imbalance in steroidogenesis and associated impartments of thyroid hormones as key interconnected nodes essential for understanding of how the regulation of distinct metabolic axis is achieved and what happens in the conditioned proteome and metabolome to produce a schizophrenia-specific pattern.
尽管已经有多项基于蛋白质组学、代谢组学和全基因组显著基因座的精神分裂症系统性研究,但重建其潜在机制仍然是一项具有挑战性的任务。定量蛋白质组学、代谢组学和全基因组关联研究(GWAS)的先进数据的结合,可以增强我们对精神分裂症分子发病机制的现有基本知识。在这项研究中,我们利用定量蛋白质组学和代谢组学分析以及高通量基因分型进行 GWAS 研究。我们鉴定了 20 种在精神分裂症患者的独立队列中得到验证的差异表达蛋白,包括 ALS、A1AG1、PEDF、VTDB、CERU、APOB、APOH、FASN、GPX3 等,其中近一半是精神分裂症的新蛋白。代谢组学调查揭示了 18 种具有特定分组的化合物,其中大多数是酪氨酸和类固醇转化的一部分,与雄激素(雄酮硫酸酯、促甲状腺素释放激素、甲状腺素、二氢睾酮、雄烯二酮、胆固醇硫酸酯、甲萘酚、多巴醌等)有关。GWAS 检测大多未能揭示显著相关的基因座,因此,52 个平滑 p<10 的基因座被部分整合到蛋白质组-代谢组数据中。我们整合了三个组学层面,并通过定量分析为它们提供动力,提出了一个与精神分裂症病理相关的分子事件图谱。不同分子层面之间的相互作用强调了脂质转运、氧化应激、类固醇生成失衡以及相关甲状腺激素的影响的严格含义,这是理解如何实现不同代谢轴的调节以及在有条件的蛋白质组和代谢组中发生了什么以产生精神分裂症特异性模式的关键。