Suppr超能文献

唾液数据库——人类唾液生物标志物的综合数据库。

SalivaDB-a comprehensive database for salivary biomarkers in humans.

机构信息

Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.

出版信息

Database (Oxford). 2023 Feb 7;2023. doi: 10.1093/database/baad002.

Abstract

Saliva as a non-invasive diagnostic fluid has immense potential as a tool for early diagnosis and prognosis of patients. The information about salivary biomarkers is broadly scattered across various resources and research papers. It is important to bring together all the information on salivary biomarkers to a single platform. This will accelerate research and development in non-invasive diagnosis and prognosis of complex diseases. We collected widespread information on five types of salivary biomarkers-proteins, metabolites, microbes, micro-ribonucleic acid (miRNA) and genes found in humans. This information was collected from different resources that include PubMed, the Human Metabolome Database and SalivaTecDB. Our database SalivaDB contains a total of 15 821 entries for 201 different diseases and 48 disease categories. These entries can be classified into five categories based on the type of biomolecules; 6067, 3987, 2909, 2272 and 586 entries belong to proteins, metabolites, microbes, miRNAs and genes, respectively. The information maintained in this database includes analysis methods, associated diseases, biomarker type, regulation status, exosomal origin, fold change and sequence. The entries are linked to relevant biological databases to provide users with comprehensive information. We developed a web-based interface that provides a wide range of options like browse, keyword search and advanced search. In addition, a similarity search module has been integrated which allows users to perform a similarity search using Basic Local Alignment Search Tool and Smith-Waterman algorithm against biomarker sequences in SalivaDB. We created a web-based database-SalivaDB, which provides information about salivary biomarkers found in humans. A wide range of web-based facilities have been integrated to provide services to the scientific community. https://webs.iiitd.edu.in/raghava/salivadb/.

摘要

唾液作为一种非侵入性诊断液体,具有作为患者早期诊断和预后工具的巨大潜力。关于唾液生物标志物的信息广泛分布在各种资源和研究论文中。将所有关于唾液生物标志物的信息汇集到一个单一的平台上非常重要。这将加速非侵入性诊断和复杂疾病预后的研究和开发。我们收集了广泛的关于五种类型的唾液生物标志物的信息——蛋白质、代谢物、微生物、微小核糖核酸 (miRNA) 和基因。这些信息来自包括 PubMed、人类代谢组数据库和 SalivaTecDB 在内的不同资源。我们的数据库 SalivaDB 包含了总共 15821 条与 201 种不同疾病和 48 种疾病类别相关的条目。这些条目可以根据生物分子的类型分为五类;分别有 6067、3987、2909、2272 和 586 条条目属于蛋白质、代谢物、微生物、miRNA 和基因。该数据库中保存的信息包括分析方法、相关疾病、生物标志物类型、调控状态、外泌体来源、倍数变化和序列。条目链接到相关的生物数据库,为用户提供全面的信息。我们开发了一个基于网络的界面,提供了广泛的选项,如浏览、关键词搜索和高级搜索。此外,还集成了一个相似性搜索模块,允许用户使用基本局部比对搜索工具和 Smith-Waterman 算法对 SalivaDB 中的生物标志物序列进行相似性搜索。我们创建了一个基于网络的数据库 SalivaDB,其中提供了关于人类唾液生物标志物的信息。集成了广泛的基于网络的设施,为科学界提供服务。https://webs.iiitd.edu.in/raghava/salivadb/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c606/9902669/274a64b1e928/baad002f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验