Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands.
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
Chaos. 2023 Feb;33(2):023136. doi: 10.1063/5.0129398.
Isolating slower dynamics from fast fluctuations has proven remarkably powerful, but how do we proceed from partial observations of dynamical systems for which we lack underlying equations? Here, we construct maximally predictive states by concatenating measurements in time, partitioning the resulting sequences using maximum entropy, and choosing the sequence length to maximize short-time predictive information. Transitions between these states yield a simple approximation of the transfer operator, which we use to reveal timescale separation and long-lived collective modes through the operator spectrum. Applicable to both deterministic and stochastic processes, we illustrate our approach through partial observations of the Lorenz system and the stochastic dynamics of a particle in a double-well potential. We use our transfer operator approach to provide a new estimator of the Kolmogorov-Sinai entropy, which we demonstrate in discrete and continuous-time systems, as well as the movement behavior of the nematode worm C. elegans.
从快变的波动中分离慢动态已被证明是非常有效的,但对于缺乏基础方程的动态系统的部分观测,我们该如何继续呢?在这里,我们通过在时间上串联测量值来构建最大预测状态,使用最大熵对生成的序列进行分区,并选择序列长度来最大化短时间预测信息。这些状态之间的转换产生了转移算子的简单近似,我们可以通过算子谱来揭示时间尺度的分离和长寿命的集体模式。该方法适用于确定性和随机过程,我们通过对洛伦兹系统和双势阱中粒子的随机动力学的部分观测来说明我们的方法。我们使用转移算子方法提供了一个新的 Kolmogorov-Sinai 熵估计器,我们在离散和连续时间系统中以及线虫 C. elegans 的运动行为中进行了演示。