Suppr超能文献

发育生物学中形态发生的生成模型。

Generative models of morphogenesis in developmental biology.

机构信息

Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.

Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor; Santiago, Chile Santiago, Chile..

出版信息

Semin Cell Dev Biol. 2023 Sep 30;147:83-90. doi: 10.1016/j.semcdb.2023.02.001. Epub 2023 Feb 6.

Abstract

Understanding the mechanism by which cells coordinate their differentiation and migration is critical to our understanding of many fundamental processes such as wound healing, disease progression, and developmental biology. Mathematical models have been an essential tool for testing and developing our understanding, such as models of cells as soft spherical particles, reaction-diffusion systems that couple cell movement to environmental factors, and multi-scale multi-physics simulations that combine bottom-up rule-based models with continuum laws. However, mathematical models can often be loosely related to data or have so many parameters that model behaviour is weakly constrained. Recent methods in machine learning introduce new means by which models can be derived and deployed. In this review, we discuss examples of mathematical models of aspects of developmental biology, such as cell migration, and how these models can be combined with these recent machine learning methods.

摘要

理解细胞如何协调其分化和迁移的机制对于我们理解许多基本过程至关重要,例如伤口愈合、疾病进展和发育生物学。数学模型一直是测试和发展我们理解的重要工具,例如将细胞视为软球形颗粒的模型、将细胞运动与环境因素耦合的反应扩散系统,以及将基于规则的自下而上模型与连续体定律相结合的多尺度多物理模拟。然而,数学模型通常与数据的相关性较弱,或者有太多的参数,以至于模型行为的约束很弱。机器学习中的最新方法引入了可以推导和部署模型的新方法。在这篇综述中,我们讨论了发育生物学方面的数学模型的例子,例如细胞迁移,以及这些模型如何与这些最近的机器学习方法相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb3/10615838/0e6bc5983047/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验