School of Integrated Science and Innovation, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani, 12121, Thailand.
Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Sci Rep. 2023 Feb 9;13(1):2284. doi: 10.1038/s41598-023-29496-x.
Alcoholysis is a promising approach for upcycling postconsumer polylactide (PLA) products into valuable constituents. In addition, an alcohol-acidolysis of PLA by multifunctional 2,2-bis(hydroxymethyl)propionic acid (DMPA) produces lactate oligomers with hydroxyl and carboxylic acid terminals. In this work, a process for sizing down commercial PLA resin to optimum medium-sized lactate oligomers is developed at a lower cost than a bottom-up synthesis from its monomer. The microwave-assisted reaction is conveniently conducted at 220-240 °C and pressure lower than 100 psi. The PLA resin was completely converted via alcohol-acidolysis reaction, with a product purification yield as high as 93%. The resulting products are characterized by FTIR, 2D-NMR, H-NMR, GPC, DSC, and XRD spectroscopy. The effects of PLA: DMPA feed ratios and the incorporation of 1,4-butanediol (BDO) on the structures, properties, and particle formability of the alcohol-acidolyzed products are examined. The products from a ratio of 12:1, which possessed optimum size and structures, are used to synthesize PLA-based polyurethane (PUD) by reacting with 1,6-diisocyanatohexane (HDI). The resulting PUD is employed in encapsulating lavender essential oil (LO). Without using any surfactant, stable LO-loaded nanoparticles are prepared due to the copolymer's self-stabilizability from its carboxylate groups. The effect of the polymer: LO feed ratio (1.25-3.75: 1) on the physicochemical properties of the resulting nanoparticles, e.g., colloidal stability (zeta potential > -60 mV), hydrodynamic size (300-500 nm), encapsulation efficiency (80-88%), and in vitro release, are investigated. The LO-loaded nanoparticles show non-toxicity to fibroblast cells, with an IC value higher than 2000 µg/mL. The products from this process have high potential as drug encapsulation templates in biomedical applications.
醇解是一种有前途的方法,可以将消费后的聚乳酸(PLA)产品升级为有价值的成分。此外,多功能 2,2-双(羟甲基)丙酸(DMPA)对 PLA 的醇-酸解反应生成具有羟基和羧酸端基的乳酸低聚物。在这项工作中,开发了一种将商业 PLA 树脂缩合为最佳中等大小的乳酸低聚物的工艺,其成本低于从单体进行自下而上的合成。微波辅助反应在 220-240°C 和低于 100 psi 的压力下方便地进行。通过醇-酸解反应完全转化 PLA 树脂,产物纯化收率高达 93%。所得产物通过 FTIR、2D-NMR、H-NMR、GPC、DSC 和 XRD 光谱进行表征。考察了 PLA:DMPA 进料比以及 1,4-丁二醇(BDO)的加入对醇-酸解产物结构、性能和颗粒可成形性的影响。在 12:1 的比例下,产物具有最佳的尺寸和结构,用于通过与 1,6-己二异氰酸酯(HDI)反应合成 PLA 基聚氨酯(PUD)。所得 PUD 用于包封薰衣草精油(LO)。由于共聚物的羧酸盐基团具有自稳定能力,无需使用任何表面活性剂,即可制备稳定的负载 LO 的纳米颗粒。考察了聚合物:LO 进料比(1.25-3.75:1)对所得纳米颗粒的物理化学性质的影响,例如胶体稳定性(zeta 电位> -60 mV)、水动力粒径(300-500nm)、包封效率(80-88%)和体外释放。负载 LO 的纳米颗粒对成纤维细胞无毒性,IC 值高于 2000μg/mL。该工艺的产物在生物医学应用中作为药物封装模板具有很高的潜力。