Suppr超能文献

使用复杂脑网络和可解释机器学习对学习者进行多层次认知状态分类

Multi-level cognitive state classification of learners using complex brain networks and interpretable machine learning.

作者信息

He Xiuling, Li Yue, Xiao Xiong, Li Yingting, Fang Jing, Zhou Ruijie

机构信息

National Engineering Research Center of Educational Big Data, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China.

National Engineering Research Center for E-Learning, Central China Normal University, Luoyu Road, Wuhan, 430079 Hubei China.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):5. doi: 10.1007/s11571-024-10203-z. Epub 2025 Jan 3.

Abstract

Identifying the cognitive state can help educators understand the evolving thought processes of learners, and it is important in promoting the development of higher-order thinking skills (HOTS). Cognitive neuroscience research identifies cognitive states by designing experimental tasks and recording electroencephalography (EEG) signals during task performance. However, most of the previous studies primarily concentrated on extracting features from individual channels in single-type tasks, ignoring the interconnection across channels. In this study, three learning activities (i.e., video watching activity, keyword extracting activity, and essay creating activity) were designed based on a revised Bloom's taxonomy and the Interactive-Constructive-Active-Passive framework and used with 31 college students. The EEG signals were recorded when they were engaged in these activities. First, whole-brain network temporal dynamics were characterized by EEG microstate sequence analysis. Such dynamic changes rely on learning activity and corresponding functional brain systems. Subsequently, phase locking value was used to construct synchrony-based functional brain networks. The network characteristics were extracted to be inputted into different machine learning classifiers: Support Vector Machine, K-Nearest Neighbour, Random Forest, and eXtreme Gradient Boosting (XGBoost). XGBoost showed superior performance in the classification of cognitive states, with an accuracy of 88.07%. Furthermore, SHapley Additive exPlanations (SHAP) was adopted to reveal the connections between different brain regions that contributed to the classification of cognitive state. SHAP analysis reveals that the connections in the frontal, temporal, and central regions are most important for the high cognitive state. Collectively, this study may provide further evidence for educators to design cognitive-guided instructional activities to enhance learners' HOTS.

摘要

识别认知状态有助于教育工作者了解学习者不断发展的思维过程,这对促进高阶思维技能(HOTS)的发展至关重要。认知神经科学研究通过设计实验任务并在任务执行过程中记录脑电图(EEG)信号来识别认知状态。然而,以往的大多数研究主要集中在从单一类型任务的单个通道中提取特征,而忽略了通道之间的相互联系。在本研究中,基于修订后的布鲁姆分类法和交互式-建构性-主动性-被动性框架设计了三项学习活动(即视频观看活动、关键词提取活动和短文创作活动),并让31名大学生参与。在他们参与这些活动时记录EEG信号。首先,通过EEG微状态序列分析来表征全脑网络的时间动态。这种动态变化依赖于学习活动和相应的功能性脑系统。随后,使用锁相值来构建基于同步的功能性脑网络。提取网络特征并将其输入到不同的机器学习分类器中:支持向量机、K近邻、随机森林和极端梯度提升(XGBoost)。XGBoost在认知状态分类方面表现出卓越的性能,准确率为88.07%。此外,采用夏普利值附加解释(SHAP)来揭示不同脑区之间对认知状态分类有贡献的联系。SHAP分析表明,额叶、颞叶和中央区域的连接对高认知状态最为重要。总体而言,本研究可能为教育工作者设计认知导向的教学活动以提高学习者的高阶思维技能提供进一步的证据。

相似文献

本文引用的文献

4
Gene expression networks regulated by human personality.人类个性调控的基因表达网络。
Mol Psychiatry. 2024 Jul;29(7):2241-2260. doi: 10.1038/s41380-024-02484-x. Epub 2024 Mar 4.
7
The Functional Aspects of Resting EEG Microstates: A Systematic Review.静息态 EEG 微状态的功能方面:系统评价。
Brain Topogr. 2024 Mar;37(2):181-217. doi: 10.1007/s10548-023-00958-9. Epub 2023 May 10.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验