Medrano Johan, Friston Karl, Zeidman Peter
The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK.
Netw Neurosci. 2024 Apr 1;8(1):24-43. doi: 10.1162/netn_a_00343. eCollection 2024.
A pervasive challenge in neuroscience is testing whether neuronal connectivity changes over time due to specific causes, such as stimuli, events, or clinical interventions. Recent hardware innovations and falling data storage costs enable longer, more naturalistic neuronal recordings. The implicit opportunity for understanding the self-organised brain calls for new analysis methods that link temporal scales: from the order of milliseconds over which neuronal dynamics evolve, to the order of minutes, days, or even years over which experimental observations unfold. This review article demonstrates how hierarchical generative models and Bayesian inference help to characterise neuronal activity across different time scales. Crucially, these methods go beyond describing statistical associations among observations and enable inference about underlying mechanisms. We offer an overview of fundamental concepts in state-space modeling and suggest a taxonomy for these methods. Additionally, we introduce key mathematical principles that underscore a separation of temporal scales, such as the slaving principle, and review Bayesian methods that are being used to test hypotheses about the brain with multiscale data. We hope that this review will serve as a useful primer for experimental and computational neuroscientists on the state of the art and current directions of travel in the complex systems modelling literature.
神经科学中一个普遍存在的挑战是测试神经元连接是否会因特定原因(如刺激、事件或临床干预)随时间而发生变化。最近的硬件创新和数据存储成本的下降使得能够进行更长时间、更自然的神经元记录。理解自组织大脑的潜在机会需要新的分析方法来连接不同的时间尺度:从神经元动态演变的毫秒级顺序,到实验观察展开的分钟级、天级甚至年级顺序。这篇综述文章展示了分层生成模型和贝叶斯推理如何有助于刻画不同时间尺度上的神经元活动。至关重要的是,这些方法不仅描述观察结果之间的统计关联,还能对潜在机制进行推断。我们概述了状态空间建模中的基本概念,并为这些方法提出了一种分类法。此外,我们介绍了强调时间尺度分离的关键数学原理,如役使原理,并回顾了用于通过多尺度数据检验关于大脑假设的贝叶斯方法。我们希望这篇综述能为实验神经科学家和计算神经科学家提供一份有用的入门指南,介绍复杂系统建模文献的现状和当前发展方向。