Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, T3 MS B216, Los Alamos, NM 87545, USA.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):8978-83. doi: 10.1073/pnas.1017313108. Epub 2011 May 16.
We use a three-dimensional, higher-order ice flow model and a realistic initial condition to simulate dynamic perturbations to the Greenland ice sheet during the last decade and to assess their contribution to sea level by 2100. Starting from our initial condition, we apply a time series of observationally constrained dynamic perturbations at the marine termini of Greenland's three largest outlet glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. The initial and long-term diffusive thinning within each glacier catchment is then integrated spatially and temporally to calculate a minimum sea-level contribution of approximately 1 ± 0.4 mm from these three glaciers by 2100. Based on scaling arguments, we extend our modeling to all of Greenland and estimate a minimum dynamic sea-level contribution of approximately 6 ± 2 mm by 2100. This estimate of committed sea-level rise is a minimum because it ignores mass loss due to future changes in ice sheet dynamics or surface mass balance. Importantly, > 75% of this value is from the long-term, diffusive response of the ice sheet, suggesting that the majority of sea-level rise from Greenland dynamics during the past decade is yet to come. Assuming similar and recurring forcing in future decades and a self-similar ice dynamical response, we estimate an upper bound of 45 mm of sea-level rise from Greenland dynamics by 2100. These estimates are constrained by recent observations of dynamic mass loss in Greenland and by realistic model behavior that accounts for both the long-term cumulative mass loss and its decay following episodic boundary forcing.
我们使用一个三维、高阶的冰流模型和一个现实的初始条件来模拟过去十年期间对格陵兰冰盖的动态干扰,并评估它们对 2100 年海平面的贡献。从我们的初始条件出发,我们在格陵兰三个最大的出海口冰川(雅各布港冰川、黑尔海姆冰川和凯凯门努苏瓦克冰川)的海洋终端施加一系列观测约束的动态干扰时间序列。然后,在空间和时间上综合每个冰川流域的初始和长期扩散变薄,以计算这三个冰川在 2100 年之前对海平面上升的最小贡献约为 1 ± 0.4 毫米。基于比例论证,我们将我们的模型扩展到整个格陵兰岛,并估计到 2100 年,动态海平面上升的最小贡献约为 6 ± 2 毫米。这个预估的海平面上升是一个最小值,因为它忽略了未来冰盖动力学或表面质量平衡变化导致的质量损失。重要的是,这个值的>75%来自冰盖的长期扩散响应,这表明过去十年中格陵兰岛动态导致的海平面上升的大部分尚未到来。假设未来几十年出现类似的和重复的干扰以及冰动力学的自相似响应,我们估计到 2100 年,格陵兰岛动力学导致的海平面上升上限为 45 毫米。这些估计受到最近观测到的格陵兰岛动态质量损失以及考虑到长期累积质量损失及其在偶发边界干扰后的衰减的现实模型行为的约束。