Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
Department of bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.
Nat Commun. 2023 Feb 10;14(1):761. doi: 10.1038/s41467-022-35712-5.
The anticipation of progression of Alzheimer's disease (AD) is crucial for evaluations of secondary prevention measures thought to modify the disease trajectory. However, it is difficult to forecast the natural progression of AD, notably because several functions decline at different ages and different rates in different patients. We evaluate here AD Course Map, a statistical model predicting the progression of neuropsychological assessments and imaging biomarkers for a patient from current medical and radiological data at early disease stages. We tested the method on more than 96,000 cases, with a pool of more than 4,600 patients from four continents. We measured the accuracy of the method for selecting participants displaying a progression of clinical endpoints during a hypothetical trial. We show that enriching the population with the predicted progressors decreases the required sample size by 38% to 50%, depending on trial duration, outcome, and targeted disease stage, from asymptomatic individuals at risk of AD to subjects with early and mild AD. We show that the method introduces no biases regarding sex or geographic locations and is robust to missing data. It performs best at the earliest stages of disease and is therefore highly suitable for use in prevention trials.
阿尔茨海默病(AD)进展的预测对于评估被认为可以改变疾病进程的二级预防措施至关重要。然而,AD 的自然进展很难预测,主要是因为在不同的患者中,几种功能会在不同的年龄和不同的速度下降。我们在这里评估 AD 病程图,这是一种统计模型,可以根据早期疾病阶段患者的当前医学和放射学数据预测神经心理学评估和影像学生物标志物的进展。我们在超过 96000 例病例中测试了该方法,其中有来自四大洲的 4600 多名患者的样本库。我们衡量了该方法在假设性试验中选择显示临床终点进展的参与者的准确性。我们表明,通过预测进展者来丰富人群,可以根据试验持续时间、结果和目标疾病阶段,将所需的样本量减少 38%至 50%,从有 AD 风险的无症状个体到早期和轻度 AD 患者。我们表明,该方法不会产生关于性别或地理位置的偏差,并且对缺失数据具有鲁棒性。它在疾病的最早阶段表现最佳,因此非常适合用于预防试验。