Sørensen Peter Jagd, Carlsen Jonathan Frederik, Larsen Vibeke Andrée, Andersen Flemming Littrup, Ladefoged Claes Nøhr, Nielsen Michael Bachmann, Poulsen Hans Skovgaard, Hansen Adam Espe
Department of Radiology, Centre of Diagnostic Investigation, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark.
Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.
Diagnostics (Basel). 2023 Jan 18;13(3):363. doi: 10.3390/diagnostics13030363.
In the context of brain tumour response assessment, deep learning-based three-dimensional (3D) tumour segmentation has shown potential to enter the routine radiological workflow. The purpose of the present study was to perform an external evaluation of a state-of-the-art deep learning 3D brain tumour segmentation algorithm (HD-GLIO) on an independent cohort of consecutive, post-operative patients. For 66 consecutive magnetic resonance imaging examinations, we compared delineations of contrast-enhancing (CE) tumour lesions and non-enhancing T2/FLAIR hyperintense abnormality (NE) lesions by the HD-GLIO algorithm and radiologists using Dice similarity coefficients (Dice). Volume agreement was assessed using concordance correlation coefficients (CCCs) and Bland-Altman plots. The algorithm performed very well regarding the segmentation of NE volumes (median Dice = 0.79) and CE tumour volumes larger than 1.0 cm (median Dice = 0.86). If considering all cases with CE tumour lesions, the performance dropped significantly (median Dice = 0.40). Volume agreement was excellent with CCCs of 0.997 (CE tumour volumes) and 0.922 (NE volumes). The findings have implications for the application of the HD-GLIO algorithm in the routine radiological workflow where small contrast-enhancing tumours will constitute a considerable share of the follow-up cases. Our study underlines that independent validations on clinical datasets are key to asserting the robustness of deep learning algorithms.
在脑肿瘤反应评估的背景下,基于深度学习的三维(3D)肿瘤分割已显示出进入常规放射学工作流程的潜力。本研究的目的是在一组连续的术后患者独立队列中,对一种先进的深度学习3D脑肿瘤分割算法(HD-GLIO)进行外部评估。对于66次连续的磁共振成像检查,我们使用Dice相似系数(Dice)比较了HD-GLIO算法和放射科医生对强化(CE)肿瘤病变和非强化T2/FLAIR高信号异常(NE)病变的描绘。使用一致性相关系数(CCC)和Bland-Altman图评估体积一致性。该算法在分割NE体积(中位数Dice = 0.79)和大于1.0 cm的CE肿瘤体积(中位数Dice = 0.86)方面表现非常出色。如果考虑所有有CE肿瘤病变的病例,性能会显著下降(中位数Dice = 0.40)。体积一致性非常好,CE肿瘤体积的CCC为0.997,NE体积的CCC为0.922。这些发现对于HD-GLIO算法在常规放射学工作流程中的应用具有启示意义,在该流程中,小的强化肿瘤将在随访病例中占相当大的比例。我们的研究强调,对临床数据集进行独立验证是确定深度学习算法稳健性的关键。
Diagnostics (Basel). 2023-1-18
Digit Health. 2022-3-16
Tech Innov Patient Support Radiat Oncol. 2025-8-6
Neurooncol Adv. 2024-3-14
Healthcare (Basel). 2022-7-14
Nat Rev Clin Oncol. 2021-3
Korean J Radiol. 2020-10