文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于术后磁共振成像(MRI)脑肿瘤分割的HD-GLIO深度学习算法评估

Evaluation of the HD-GLIO Deep Learning Algorithm for Brain Tumour Segmentation on Postoperative MRI.

作者信息

Sørensen Peter Jagd, Carlsen Jonathan Frederik, Larsen Vibeke Andrée, Andersen Flemming Littrup, Ladefoged Claes Nøhr, Nielsen Michael Bachmann, Poulsen Hans Skovgaard, Hansen Adam Espe

机构信息

Department of Radiology, Centre of Diagnostic Investigation, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark.

Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.

出版信息

Diagnostics (Basel). 2023 Jan 18;13(3):363. doi: 10.3390/diagnostics13030363.


DOI:10.3390/diagnostics13030363
PMID:36766468
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9914320/
Abstract

In the context of brain tumour response assessment, deep learning-based three-dimensional (3D) tumour segmentation has shown potential to enter the routine radiological workflow. The purpose of the present study was to perform an external evaluation of a state-of-the-art deep learning 3D brain tumour segmentation algorithm (HD-GLIO) on an independent cohort of consecutive, post-operative patients. For 66 consecutive magnetic resonance imaging examinations, we compared delineations of contrast-enhancing (CE) tumour lesions and non-enhancing T2/FLAIR hyperintense abnormality (NE) lesions by the HD-GLIO algorithm and radiologists using Dice similarity coefficients (Dice). Volume agreement was assessed using concordance correlation coefficients (CCCs) and Bland-Altman plots. The algorithm performed very well regarding the segmentation of NE volumes (median Dice = 0.79) and CE tumour volumes larger than 1.0 cm (median Dice = 0.86). If considering all cases with CE tumour lesions, the performance dropped significantly (median Dice = 0.40). Volume agreement was excellent with CCCs of 0.997 (CE tumour volumes) and 0.922 (NE volumes). The findings have implications for the application of the HD-GLIO algorithm in the routine radiological workflow where small contrast-enhancing tumours will constitute a considerable share of the follow-up cases. Our study underlines that independent validations on clinical datasets are key to asserting the robustness of deep learning algorithms.

摘要

在脑肿瘤反应评估的背景下,基于深度学习的三维(3D)肿瘤分割已显示出进入常规放射学工作流程的潜力。本研究的目的是在一组连续的术后患者独立队列中,对一种先进的深度学习3D脑肿瘤分割算法(HD-GLIO)进行外部评估。对于66次连续的磁共振成像检查,我们使用Dice相似系数(Dice)比较了HD-GLIO算法和放射科医生对强化(CE)肿瘤病变和非强化T2/FLAIR高信号异常(NE)病变的描绘。使用一致性相关系数(CCC)和Bland-Altman图评估体积一致性。该算法在分割NE体积(中位数Dice = 0.79)和大于1.0 cm的CE肿瘤体积(中位数Dice = 0.86)方面表现非常出色。如果考虑所有有CE肿瘤病变的病例,性能会显著下降(中位数Dice = 0.40)。体积一致性非常好,CE肿瘤体积的CCC为0.997,NE体积的CCC为0.922。这些发现对于HD-GLIO算法在常规放射学工作流程中的应用具有启示意义,在该流程中,小的强化肿瘤将在随访病例中占相当大的比例。我们的研究强调,对临床数据集进行独立验证是确定深度学习算法稳健性的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/9dae61973ab5/diagnostics-13-00363-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/6fc4964edebe/diagnostics-13-00363-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/34727f8ec47f/diagnostics-13-00363-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/f21b191ad1ea/diagnostics-13-00363-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/5a1024102a26/diagnostics-13-00363-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/95afc0e648d4/diagnostics-13-00363-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/9864d71ace35/diagnostics-13-00363-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/9dae61973ab5/diagnostics-13-00363-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/6fc4964edebe/diagnostics-13-00363-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/34727f8ec47f/diagnostics-13-00363-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/f21b191ad1ea/diagnostics-13-00363-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/5a1024102a26/diagnostics-13-00363-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/95afc0e648d4/diagnostics-13-00363-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/9864d71ace35/diagnostics-13-00363-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb39/9914320/9dae61973ab5/diagnostics-13-00363-g007.jpg

相似文献

[1]
Evaluation of the HD-GLIO Deep Learning Algorithm for Brain Tumour Segmentation on Postoperative MRI.

Diagnostics (Basel). 2023-1-18

[2]
Feasibility of deep learning-based tumor segmentation for target delineation and response assessment in grade-4 glioma using multi-parametric MRI.

Neurooncol Adv. 2023-4-13

[3]
Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.

Lancet Oncol. 2019-4-2

[4]
Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.

Neuroimage Clin. 2022

[5]
Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System.

Rofo. 2021-5

[6]
Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI.

Eur Radiol. 2018-6-25

[7]
Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.

Lancet Digit Health. 2021-12

[8]
Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.

Invest Radiol. 2018-11

[9]
Magnetic resonance image-based brain tumour segmentation methods: A systematic review.

Digit Health. 2022-3-16

[10]
Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation.

Eur Radiol. 2022-5

引用本文的文献

[1]
Clinical evaluation of two glioblastoma delineation methods based on neural networks.

Tech Innov Patient Support Radiat Oncol. 2025-8-6

[2]
Comparative analysis of deep learning and radiomic signatures for overall survival prediction in recurrent high-grade glioma treated with immunotherapy.

Cancer Imaging. 2025-1-21

[3]
Repurposing the Public BraTS Dataset for Postoperative Brain Tumour Treatment Response Monitoring.

Tomography. 2024-9-1

[4]
Segmentation of pre- and posttreatment diffuse glioma tissue subregions including resection cavities.

Neurooncol Adv. 2024-8-16

[5]
Fully automated MR-based virtual biopsy of primary CNS lymphomas.

Neurooncol Adv. 2024-3-14

本文引用的文献

[1]
Artificial intelligence (AI)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: An international multi-reader study.

Neuro Oncol. 2023-3-14

[2]
Screening Lung Diseases Using Cascaded Feature Generation and Selection Strategies.

Healthcare (Basel). 2022-7-14

[3]
Automated brain tumor identification using magnetic resonance imaging: A systematic review and meta-analysis.

Neurooncol Adv. 2022-5-27

[4]
Efficacy of High-Resolution Preoperative 3D Reconstructions for Lesion Localization in Oncological Colorectal Surgery-First Pilot Study.

Healthcare (Basel). 2022-5-12

[5]
Borrowing strength from adults: Transferability of AI algorithms for paediatric brain and tumour segmentation.

Eur J Radiol. 2022-6

[6]
Glioblastoma Surgery Imaging-Reporting and Data System: Validation and Performance of the Automated Segmentation Task.

Cancers (Basel). 2021-9-17

[7]
Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System.

Lab Invest. 2022-2

[8]
EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood.

Nat Rev Clin Oncol. 2021-3

[9]
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.

Nat Methods. 2021-2

[10]
Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging.

Korean J Radiol. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索