Suppr超能文献

基于不确定性感知分层概率网络的肺结节进展预测

Prediction of Lung Nodule Progression with an Uncertainty-Aware Hierarchical Probabilistic Network.

作者信息

Rafael-Palou Xavier, Aubanell Anton, Ceresa Mario, Ribas Vicent, Piella Gemma, Ballester Miguel A González

机构信息

BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08108 Barcelona, Spain.

Eurecat Centre Tecnològic de Catalunya, Digital Health Unit, 08005 Barcelona, Spain.

出版信息

Diagnostics (Basel). 2022 Oct 31;12(11):2639. doi: 10.3390/diagnostics12112639.

Abstract

Predicting whether a lung nodule will grow, remain stable or regress over time, especially early in its follow-up, would help doctors prescribe personalized treatments and better surgical planning. However, the multifactorial nature of lung tumour progression hampers the identification of growth patterns. In this work, we propose a deep hierarchical generative and probabilistic network that, given an initial image of the nodule, predicts whether it will grow, quantifies its future size and provides its expected semantic appearance at a future time. Unlike previous solutions, our approach also estimates the uncertainty in the predictions from the intrinsic noise in medical images and the inter-observer variability in the annotations. The evaluation of this method on an independent test set reported a future tumour growth size mean absolute error of 1.74 mm, a nodule segmentation Dice's coefficient of 78% and a tumour growth accuracy of 84% on predictions made up to 24 months ahead. Due to the lack of similar methods for providing future lung tumour growth predictions, along with their associated uncertainty, we adapted equivalent deterministic and alternative generative networks (i.e., probabilistic U-Net, Bayesian test dropout and Pix2Pix). Our method outperformed all these methods, corroborating the adequacy of our approach.

摘要

预测肺结节随时间推移是会生长、保持稳定还是消退,尤其是在随访早期进行预测,将有助于医生制定个性化治疗方案并更好地进行手术规划。然而,肺肿瘤进展的多因素性质阻碍了生长模式的识别。在这项工作中,我们提出了一种深度分层生成概率网络,该网络在给定结节的初始图像后,能够预测其是否会生长,量化其未来大小,并提供其在未来某个时间的预期语义外观。与以前的解决方案不同,我们的方法还从医学图像中的固有噪声和注释中的观察者间变异性估计预测中的不确定性。在一个独立测试集上对该方法的评估报告称,未来肿瘤生长大小的平均绝对误差为1.74毫米,结节分割的骰子系数为78%,对提前24个月做出的预测的肿瘤生长准确率为84%。由于缺乏提供未来肺肿瘤生长预测及其相关不确定性的类似方法,我们采用了等效的确定性网络和替代生成网络(即概率U-Net、贝叶斯测试丢弃法和Pix2Pix)。我们的方法优于所有这些方法,证实了我们方法的充分性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dd7/9689366/b75cf284c14c/diagnostics-12-02639-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验