Suppr超能文献

用于预测混凝土火灾后自愈能力的可解释机器学习

Interpretable Machine Learning for Prediction of Post-Fire Self-Healing of Concrete.

作者信息

Rajczakowska Magdalena, Szeląg Maciej, Habermehl-Cwirzen Karin, Hedlund Hans, Cwirzen Andrzej

机构信息

Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.

Faculty of Civil Engineering and Architecture, Lublin University of Technology, 40 Nadbystrzycka Str., 20-618 Lublin, Poland.

出版信息

Materials (Basel). 2023 Feb 2;16(3):1273. doi: 10.3390/ma16031273.

Abstract

Developing accurate and interpretable models to forecast concrete's self-healing behavior is of interest to material engineers, scientists, and civil engineering contractors. Machine learning (ML) and artificial intelligence are powerful tools that allow constructing high-precision predictions, yet often considered "black box" methods due to their complexity. Those approaches are commonly used for the modeling of mechanical properties of concrete with exceptional accuracy; however, there are few studies dealing with the application of ML for the self-healing of cementitious materials. This paper proposes a pioneering study on the utilization of ML for predicting post-fire self-healing of concrete. A large database is constructed based on the literature studies. Twelve input variables are analyzed: w/c, age of concrete, amount of cement, fine aggregate, coarse aggregate, peak loading temperature, duration of peak loading temperature, cooling regime, duration of cooling, curing regime, duration of curing, and specimen volume. The output of the model is the compressive strength recovery, being one of the self-healing efficiency indicators. Four ML methods are optimized and compared based on their performance error: Support Vector Machines (SVM), Regression Trees (RT), Artificial Neural Networks (ANN), and Ensemble of Regression Trees (ET). Monte Carlo analysis is conducted to verify the stability of the selected model. All ML approaches demonstrate satisfying precision, twice as good as linear regression. The ET model is found to be the most optimal with the highest prediction accuracy and sufficient robustness. Model interpretation is performed using Partial Dependence Plots and Individual Conditional Expectation Plots. Temperature, curing regime, and amounts of aggregates are identified as the most significant predictors.

摘要

开发准确且可解释的模型来预测混凝土的自愈行为,这是材料工程师、科学家和土木工程承包商所感兴趣的。机器学习(ML)和人工智能是强大的工具,能够构建高精度的预测,但由于其复杂性,常被视为“黑箱”方法。这些方法通常用于以极高的精度对混凝土的力学性能进行建模;然而,很少有研究涉及将机器学习应用于胶凝材料的自愈。本文提出了一项关于利用机器学习预测混凝土火灾后自愈的开创性研究。基于文献研究构建了一个大型数据库。分析了十二个输入变量:水灰比、混凝土龄期、水泥用量、细集料、粗集料、峰值加载温度、峰值加载温度持续时间、冷却方式、冷却持续时间、养护方式、养护持续时间和试件体积。模型的输出是抗压强度恢复率,它是自愈效率指标之一。基于性能误差对四种机器学习方法进行了优化和比较:支持向量机(SVM)、回归树(RT)、人工神经网络(ANN)和回归树集成(ET)。进行了蒙特卡罗分析以验证所选模型的稳定性。所有机器学习方法都展示出令人满意的精度,是线性回归精度的两倍。发现ET模型是最优的,具有最高的预测精度和足够的稳健性。使用部分依赖图和个体条件期望图进行模型解释。温度、养护方式和集料用量被确定为最重要的预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b869/9919821/f0ee31f4b162/materials-16-01273-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验