Zhang Haiyan, Zhu Zi, Yang Min, Li Youji, Lin Xiao, Li Ming, Tang Senpei, Teng Yuan, Kuang Dai-Bin
National Experimental Teaching Demonstration Center for Chemistry, College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China.
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
Nanomaterials (Basel). 2023 Jan 18;13(3):401. doi: 10.3390/nano13030401.
An S-doped CdO@InO nanofiber was successfully designed by in-situ electrospinning along and subsequent calcination treatment. Under artificial sunlight illumination, the S/CdO@InO-25 displayed a superior photocatalytic hydrogen evolution rate of 4564.58 μmol·g·h, with approximately 22.0 and 1261.0-fold of those shown by the S/CdO and S/InO samples, respectively. The experimental and theoretical analyses illustrate that the unique one-dimensional (1D) nanofiber morphology and rich oxygen vacancies optimized the electronic structure of the nanofibers and adsorption/desorption behaviors of reaction intermediates, contributing to the realization of the remarkable solar-to-H conversion efficiencies. Moreover, the staggered band structure and intimate contact heterointerfaces facilitate the formation of a type-II double charge-transfer pathway, promoting the spatial separation of photoexcited charge carriers. These results could inform the design of other advanced catalyst materials for photocatalytic reactions.
通过原位静电纺丝及后续煅烧处理成功设计出一种硫掺杂的氧化镉@氧化铟纳米纤维。在人工阳光照射下,S/CdO@InO-25表现出4564.58 μmol·g·h的优异光催化析氢速率,分别约为S/CdO和S/InO样品的22.0倍和1261.0倍。实验和理论分析表明,独特的一维(1D)纳米纤维形态和丰富的氧空位优化了纳米纤维的电子结构以及反应中间体的吸附/解吸行为,有助于实现显著的太阳能到氢能的转换效率。此外,交错的能带结构和紧密接触的异质界面促进了II型双电荷转移途径的形成,促进了光激发电荷载流子的空间分离。这些结果可为光催化反应的其他先进催化剂材料的设计提供参考。