Yang Xiuru, Roy Anurag, Alhabradi Mansour, Alruwaili Manal, Chang Hong, Tahir Asif Ali
Solar Energy Research Group, Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK.
Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK.
Nanomaterials (Basel). 2023 Aug 31;13(17):2464. doi: 10.3390/nano13172464.
Photocatalytic hydrogen evolution represents a transformative avenue in addressing the challenges of fossil fuels, heralding a renewable and pristine alternative to conventional fossil fuel-driven energy paradigms. Yet, a formidable challenge is crafting a high-efficacy, stable photocatalyst that optimizes solar energy transduction and charge partitioning even under adversarial conditions. Within the scope of this investigation, tantalum-iron heterojunction composites characterized by intricate, discoidal nanostructured materials were meticulously synthesized using a solvothermal-augmented calcination protocol. The X-ray diffraction, coupled with Rietveld refinements delineated the nuanced alterations in phase constitution and structural intricacies engendered by disparate calcination thermal regimes. An exhaustive study encompassing nano-morphology, electronic band attributes, bandgap dynamics, and a rigorous appraisal of their photocatalytic prowess has been executed for the composite array. Intriguingly, the specimen denoted as 1000-1, a heterojunction composite of TaO/TaO/FeTaO, manifested an exemplary photocatalytic hydrogen evolution capacity, registering at 51.24 µmol/g, which eclipses its counterpart, 1100-1 (TaO/FeTaO), by an impressive margin. Such revelations amplify the prospective utility of these tantalum iron matrices, endorsing their candidacy as potent agents for sustainable hydrogen production via photocatalysis.
光催化析氢是应对化石燃料挑战的一条变革性途径,预示着一种可再生且纯净的替代传统化石燃料驱动能源模式的选择。然而,一个巨大的挑战是制造一种高效、稳定的光催化剂,即使在不利条件下也能优化太阳能转换和电荷分配。在本研究范围内,采用溶剂热增强煅烧方案精心合成了以复杂的盘状纳米结构材料为特征的钽铁异质结复合材料。X射线衍射结合Rietveld精修法描绘了不同煅烧热制度引起的相组成和结构复杂性的细微变化。对该复合阵列进行了一项全面研究,包括纳米形态、电子能带属性、带隙动力学以及对其光催化能力的严格评估。有趣的是,标记为1000-1的样品,即TaO/TaO/FeTaO的异质结复合材料,表现出了优异的光催化析氢能力,达到51.24 μmol/g,比其对应物1100-1(TaO/FeTaO)高出显著幅度。这些发现扩大了这些钽铁基体的潜在用途,认可了它们作为通过光催化实现可持续制氢的有力剂的候选资格。