Toscano-Negrette Rafael G, León-González José C, Vinasco Juan A, Morales A L, Koc Fatih, Kavruk Ahmet Emre, Sahin Mehmet, Mora-Ramos M E, Sierra-Ortega José, Martínez-Orozco J C, Restrepo R L, Duque C A
Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medell AA 1226, Colombia.
Departamento de Física y Electrónica, Universidad de Córdoba, Carrera 6 No. 77-305, Montería 230002, Colombia.
Nanomaterials (Basel). 2023 Jan 29;13(3):550. doi: 10.3390/nano13030550.
A theoretical analysis of optical properties in a ZnS/CdS/ZnS core/shell/shell spherical quantum dot was carried out within the effective mass approximation. The corresponding Schrödinger equation was solved using the finite element method via the 2D axis-symmetric module of COMSOL-Multiphysics software. Calculations included variations of internal dot radius, the application of electric and magnetic fields (both oriented along -direction), as well as the presence of on-center donor impurity. Reported optical properties are the absorption and relative refractive index change coefficients. These quantities are related to transitions between the ground and first excited states, with linearly polarized incident radiation along the -axis. It is found that transition energy decreases with the growth of internal radius, thus causing the red-shift of resonant peaks. The same happens when the external magnetic field increases. When the strength of applied electric field is increased, the opposite effect is observed, since there is a blue-shift of resonances. However, dipole matrix moments decrease drastically with the increase of the electric field, leading to a reduction in amplitude of optical responses. At the moment impurity effects are activated, a decrease in the value of the energies is noted, significantly affecting the ground state, which is more evident for small internal radius. This is reflected in an increase in transition energies.
在有效质量近似下,对ZnS/CdS/ZnS核/壳/壳球形量子点的光学性质进行了理论分析。通过COMSOL-Multiphysics软件的二维轴对称模块,使用有限元方法求解了相应的薛定谔方程。计算内容包括量子点内部半径的变化、电场和磁场(均沿z方向)的施加以及中心施主杂质的存在。所报道的光学性质为吸收系数和相对折射率变化系数。这些量与基态和第一激发态之间的跃迁有关,入射辐射沿z轴呈线性偏振。研究发现,跃迁能量随内部半径的增大而减小,从而导致共振峰的红移。当外部磁场增加时,情况也是如此。当施加电场的强度增加时,会观察到相反的效果,因为共振会发生蓝移。然而,偶极矩会随着电场的增加而急剧减小,导致光学响应幅度降低。当杂质效应被激活时,能量值会降低,这对基态有显著影响,对于较小的内部半径更为明显。这反映在跃迁能量的增加上。