Pulgar-Velásquez Lorenz, Sierra-Ortega José, Vinasco Juan A, Laroze David, Radu Adrian, Kasapoglu Esin, Restrepo Ricardo L, Gil-Corrales John A, Morales Alvaro L, Duque Carlos A
Grupo de Investigación en Teoría de la Materia Condensada, Universidad del Magdalena, Santa Marta 470004, Colombia.
Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile.
Nanomaterials (Basel). 2021 Oct 25;11(11):2832. doi: 10.3390/nano11112832.
Using the effective mass approximation in a parabolic two-band model, we studied the effects of the geometrical parameters, on the electron and hole states, in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a shallow donor impurity and under an applied magnetic field and (ii) CdSe-CdTe core-shell type-II quantum dot. For the first system, the impurity position and the applied magnetic field direction were chosen to preserve the system's azimuthal symmetry. The finite element method obtains the solution of the Schrödinger equations for electron or hole with or without impurity with an adaptive discretization of a triangular mesh. The interaction of the electron and hole states is calculated in a first-order perturbative approximation. This study shows that the magnetic field and donor impurities are relevant factors in the optoelectronic properties of conical quantum dots. Additionally, for the CdSe-CdTe quantum dot, where, again, the axial symmetry is preserved, a switch between direct and indirect exciton is possible to be controlled through geometry.
在抛物线型双带模型中使用有效质量近似,我们研究了几何参数对两个截顶圆锥量子点中电子和空穴态的影响:(i)存在浅施主杂质且处于外加磁场下的GaAs-(Ga,Al)As量子点,以及(ii)CdSe-CdTe核壳型II型量子点。对于第一个系统,选择杂质位置和外加磁场方向以保持系统的方位对称性。有限元方法通过对三角形网格进行自适应离散化来求解有或无杂质时电子或空穴的薛定谔方程。电子和空穴态的相互作用是在一阶微扰近似下计算的。该研究表明,磁场和施主杂质是圆锥量子点光电特性的相关因素。此外,对于再次保持轴对称性的CdSe-CdTe量子点,可以通过几何结构来控制直接激子和间接激子之间的转换。