Suppr超能文献

刺激响应型超薄薄膜在生物应用中的研究进展:简要述评。

Stimulus-Responsive Ultrathin Films for Bioapplications: A Concise Review.

机构信息

Nanomaterials Lab, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK.

Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.

出版信息

Molecules. 2023 Jan 19;28(3):1020. doi: 10.3390/molecules28031020.

Abstract

The term "nanosheets" has been coined recently to describe supported and free-standing "ultrathin film" materials, with thicknesses ranging from a single atomic layer to a few tens of nanometers. Owing to their physicochemical properties and their large surface area with abundant accessible active sites, nanosheets (NSHs) of inorganic materials such as Au, amorphous carbon, graphene, and boron nitride (BN) are considered ideal building blocks or scaffolds for a wide range of applications encompassing electronic and optical devices, membranes, drug delivery systems, and multimodal contrast agents, among others. A wide variety of synthetic methods are employed for the manufacturing of these NSHs, and they can be categorized into (1) top-down approaches involving exfoliation of layered materials, or (2) bottom-up approaches where crystal growth of nanocomposites takes place in a liquid or gas phase. Of note, polymer template liquid exfoliation (PTLE) methods are the most suitable as they lead to the fabrication of high-performance and stable hybrid NSHs and NSH composites with the appropriate quality, solubility, and properties. Moreover, PTLE methods allow for the production of stimulus-responsive NSHs, whose response is commonly driven by a favorable growth in the appropriate polymer chains onto one side of the NSHs, resulting in the ability of the NSHs to roll up to form nanoscrolls (NSCs), i.e., open tubular structures with tunable interlayer gaps between their walls. On the other hand, this review gives insight into the potential of the stimulus-responsive nanostructures for biosensing and controlled drug release systems, illustrating the last advances in the PTLE methods of synthesis of these nanostructures and their applications.

摘要

“纳米片”一词最近被用来描述负载型和无载体型“超薄薄膜”材料,其厚度范围从单层原子到几十纳米。由于其物理化学性质以及具有丰富的可及活性位点的大表面积,无机材料的纳米片(NSHs),如金、无定形碳、石墨烯和氮化硼(BN),被认为是各种应用的理想构建块或支架,涵盖了电子和光学器件、膜、药物传递系统和多模态对比剂等。广泛采用各种合成方法来制造这些 NSHs,可以将它们分为(1)自上而下的方法,涉及层状材料的剥离,或(2)自下而上的方法,其中纳米复合材料的晶体生长发生在液相或气相中。值得注意的是,聚合物模板液相剥离(PTLE)方法是最合适的,因为它们导致高性能和稳定的混合 NSHs 和 NSH 复合材料的制造,具有适当的质量、溶解度和性能。此外,PTLE 方法允许生产对刺激有响应的 NSHs,其响应通常是由适当聚合物链在 NSHs 的一侧有利生长驱动的,从而使 NSHs 能够卷起形成纳米卷(NSC),即具有可调层间间隙的开放式管状结构其壁之间。另一方面,本文综述了刺激响应型纳米结构在生物传感和控制药物释放系统中的潜力,说明了这些纳米结构的 PTLE 合成方法及其应用的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ecf/9921802/7af81f86b709/molecules-28-01020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验