Suppr超能文献

基于联邦学习的使用本地MobileNet的火灾检测方法。

Federated learning based fire detection method using local MobileNet.

作者信息

Panneerselvam Sridhar, Thangavel Senthil Kumar, Ponnam Vidya Sagar, Sengan Sudhakar

机构信息

Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, 641022, India.

Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, 641112, India.

出版信息

Sci Rep. 2024 Dec 5;14(1):30388. doi: 10.1038/s41598-024-82001-w.

Abstract

Fire is a dangerous disaster that causes human, ecological, and financial ramifications. Forest fires have increased significantly in recent years due to natural and artificial climatic factors. Therefore, accurate and early prediction of fires is essential. While significant advancements have been made in traditional and Deep Learning (DL) methods for fire detection, challenges remain in accurately pinpointing and recognizing fire regions, especially in diverse and large environments, to prevent damage effectively. To address these challenges, this paper introduces a novel Federated Learning (FL)-based method called Indoor-Outdoor FireNet (IOFireNet) for detecting and localizing fire regions. The proposed method incorporates a Bilateral Filter (BF) to effectively preprocess fire images to reduce noise artifacts and enhance detection clarity. It employs Super Pixel-based Adaptive Clustering (SPAC) to precisely segment fire and non-fire regions. A global IOFireNet model is developed to aggregate parameters from local models, improving detection accuracy across varied environments, while MobileNet is used for efficient data processing, enabling predictions on fire spread, severity, and affected areas to support early warnings. The proposed FL-based IOFireNet attains an accuracy rate of 98.65% for fire detection and 97.14% of mean IoU for segmentation. The proposed SPAC model reaches a mean IoU of 4.06%, which is 2.45% better than the graph cut algorithm and CRF model. The proposed model achieves an accuracy of 0.23%, 4.20%, 3.29%, and 10.02%, better than VGG-19, ResNet-50, Inception, and Dense Net, respectively.

摘要

火灾是一种危险的灾难,会造成人员、生态和经济方面的影响。近年来,由于自然和人为气候因素,森林火灾显著增加。因此,准确和早期的火灾预测至关重要。虽然在传统和深度学习(DL)火灾检测方法方面取得了重大进展,但在准确确定和识别火灾区域方面仍存在挑战,尤其是在多样化和大型环境中,以有效防止损害。为了应对这些挑战,本文介绍了一种基于联邦学习(FL)的新颖方法,称为室内外火灾网络(IOFireNet),用于检测和定位火灾区域。所提出的方法结合了双边滤波器(BF)来有效地预处理火灾图像,以减少噪声伪影并提高检测清晰度。它采用基于超像素的自适应聚类(SPAC)来精确分割火灾和非火灾区域。开发了一个全局IOFireNet模型来聚合来自局部模型的参数,提高在各种环境中的检测准确性,同时使用MobileNet进行高效的数据处理,能够对火灾蔓延、严重程度和受影响区域进行预测,以支持早期预警。所提出的基于FL的IOFireNet在火灾检测方面的准确率达到98.65%,在分割方面的平均交并比(IoU)达到97.14%。所提出的SPAC模型的平均IoU达到4.06%,比图割算法和条件随机场(CRF)模型高出2.45%。所提出的模型分别比VGG-19、ResNet-50、Inception和Dense Net的准确率提高了0.23%、4.20%、3.29%和10.02%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38e7/11621580/4b5dbdeaf104/41598_2024_82001_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验