Suppr超能文献

代谢工程策略使微生物电合成能够利用 CO:最新进展和挑战。

Metabolic engineering strategies to enable microbial electrosynthesis utilization of CO: recent progress and challenges.

机构信息

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China.

Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.

出版信息

Crit Rev Biotechnol. 2024 May;44(3):352-372. doi: 10.1080/07388551.2023.2167065. Epub 2023 Feb 12.

Abstract

Microbial electrosynthesis (MES) is a promising technology that mainly utilizes microbial cells to convert CO into value-added chemicals using electrons provided by the cathode. However, the low electron transfer rate is a solid bottleneck hindering the further application of MES. Thus, as an effective strategy, genetic tools play a key role in MES for enhancing the electron transfer rate and diversity of production. We describe a set of genetic strategies based on fundamental characteristics and current successes and discuss their functional mechanisms in driving microbial electrocatalytic reactions to fully comprehend the roles and uses of genetic tools in MES. This paper also analyzes the process of nanomaterial application in extracellular electron transfer (EET). It provides a technique that combines nanomaterials and genetic tools to increase MES efficiency, because nanoparticles have a role in the production of functional genes in EET although genetic tools can subvert MES, it still has issues with difficult transformation and low expression levels. Genetic tools remain one of the most promising future strategies for advancing the MES process despite these challenges.

摘要

微生物电合成(MES)是一种很有前途的技术,它主要利用微生物细胞,通过阴极提供的电子将 CO 转化为有价值的化学品。然而,电子传递率低是阻碍 MES 进一步应用的一个坚固瓶颈。因此,作为一种有效的策略,遗传工具在 MES 中对于提高电子传递率和生产的多样性起着关键作用。我们描述了一套基于基本特征和当前成功的遗传策略,并讨论了它们在驱动微生物电催化反应中的功能机制,以充分理解遗传工具在 MES 中的作用和用途。本文还分析了纳米材料在细胞外电子传递(EET)中的应用过程。它提供了一种将纳米材料和遗传工具相结合以提高 MES 效率的技术,因为纳米颗粒在 EET 中的功能基因的产生中具有作用,尽管遗传工具可以颠覆 MES,但它仍然存在转化困难和表达水平低的问题。尽管存在这些挑战,遗传工具仍然是推进 MES 过程最有前途的未来策略之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验