Suppr超能文献

安慰剂样本在观察性研究中的作用。

Role of placebo samples in observational studies.

作者信息

Ye Ting, He Qijia, Chen Shuxiao, Zhang Bo

机构信息

Department of Biostatistics, University of Washington.

Department of Statistics, University of Washington.

出版信息

J Causal Inference. 2025 Jan;13(1). doi: 10.1515/jci-2023-0020. Epub 2025 Mar 5.

Abstract

In an observational study, it is common to leverage known null effects to detect bias. One such strategy is to set aside a placebo sample - a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concerns about unmeasured confounding bias while absence of it helps corroborate the causal conclusion. This paper describes a framework for using a placebo sample to detect and remove bias. We state the identification assumptions and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies investigate the finite-sample performance of the proposed methods. We illustrate the methods using an empirical study of the effect of the earned income tax credit on infant health.

摘要

在一项观察性研究中,利用已知的零效应来检测偏差是很常见的。一种这样的策略是留出一个安慰剂样本——一个不受假设的因果关系影响的数据子集。安慰剂样本中存在效应会引发对未测量的混杂偏差的担忧,而不存在效应则有助于证实因果结论。本文描述了一个使用安慰剂样本检测和消除偏差的框架。我们阐述了识别假设,并基于结果回归、逆概率加权和双重稳健方法开发了估计和推断方法。模拟研究考察了所提方法的有限样本性能。我们通过一项关于所得税抵免对婴儿健康影响的实证研究来说明这些方法。

相似文献

1
Role of placebo samples in observational studies.
J Causal Inference. 2025 Jan;13(1). doi: 10.1515/jci-2023-0020. Epub 2025 Mar 5.
3
Respiratory syncytial virus vaccination during pregnancy for improving infant outcomes.
Cochrane Database Syst Rev. 2024 May 2;5(5):CD015134. doi: 10.1002/14651858.CD015134.pub2.
4
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
5
Antidepressant treatment for postnatal depression.
Cochrane Database Syst Rev. 2014 Sep 11;2014(9):CD002018. doi: 10.1002/14651858.CD002018.pub2.
9
Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):MR000034. doi: 10.1002/14651858.MR000034.pub2.

本文引用的文献

1
Universal Difference-in-Differences for Causal Inference in Epidemiology.
Epidemiology. 2024 Jan 1;35(1):16-22. doi: 10.1097/EDE.0000000000001676. Epub 2023 Nov 27.
2
A Semiparametric Approach to Model-Based Sensitivity Analysis in Observational Studies.
J R Stat Soc Ser A Stat Soc. 2022 Dec;185(Suppl 2):S668-S691. doi: 10.1111/rssa.12946. Epub 2022 Nov 24.
4
Sensitivity analyses informed by tests for bias in observational studies.
Biometrics. 2023 Mar;79(1):475-487. doi: 10.1111/biom.13558. Epub 2021 Sep 21.
5
Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.
J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540. doi: 10.1111/rssb.12361. Epub 2020 Jan 22.
6
Can Labor Market Policies Reduce Deaths of Despair?
J Health Econ. 2020 Dec;74:102372. doi: 10.1016/j.jhealeco.2020.102372. Epub 2020 Sep 13.
7
Exploring patterns enriched in a dataset with contrastive principal component analysis.
Nat Commun. 2018 May 30;9(1):2134. doi: 10.1038/s41467-018-04608-8.
8
Doubly robust nonparametric inference on the average treatment effect.
Biometrika. 2017 Dec;104(4):863-880. doi: 10.1093/biomet/asx053. Epub 2017 Oct 16.
9
Sensitivity Analysis in Observational Research: Introducing the E-Value.
Ann Intern Med. 2017 Aug 15;167(4):268-274. doi: 10.7326/M16-2607. Epub 2017 Jul 11.
10
On negative outcome control of unobserved confounding as a generalization of difference-in-differences.
Stat Sci. 2016;31(3):348-361. doi: 10.1214/16-STS558. Epub 2016 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验