Suppr超能文献

通过在可充电镁氧电池中引入导电混合电解质改善电池性能

Battery Performance Amelioration by Introducing a Conducive Mixed Electrolyte in Rechargeable Mg-O Batteries.

作者信息

Rasupillai Dharmaraj Vasantan, Sarkar Ayan, Yi Chia-Hui, Iputera Kevin, Huang Shang-Yang, Chung Ren-Jei, Hu Shu-Fen, Liu Ru-Shi

机构信息

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.

Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 22;15(7):9675-9684. doi: 10.1021/acsami.2c22757. Epub 2023 Feb 13.

Abstract

With magnesium being a cost-effective anode metal compared to the other conventional Li-based anodes in the energy market, it could be a capable source of energy storage. However, Mg-O batteries have struggled its way to overcome the poor cycling stability and sluggish reaction kinetics. Therefore, Ru metallic nanoparticles on carbon nanotubes (CNTs) were introduced as a cathode for Mg-O batteries, which are known for their inherent electronic properties, large surface area, and increased crystallinity to favor remarkable oxygen reduction reactions and oxygen evolution reactions (ORR and OER). Also, we deployed a first-of-its-kind, conducive mixed electrolyte (CME) (2 M Mg(NO):1 M Mg(TFSI)/diglyme). Hence, this synergistic incorporation of CME-based Ru/CNT Mg-O batteries could unleash long cycle life with low overpotential, excellent reversibility, and high ionic conductivity and also reduces the intrinsic corrosion behavior of Mg anodes. Correspondingly, this novel amalgamation of CME with Ru/CNT cathode has displayed superior cyclic stability of 65 cycles and a maximum discharge potential of 25 793 mAh g with a small overvoltage plateau of 1.4 V, noticeably subjugating the findings of conventional single electrolyte (CSE) (1 M Mg(TFSI)/diglyme). This CME-based Ru/CNT Mg-O battery design could have a significant outcome as a future battery technology.

摘要

与能源市场中其他传统锂基负极相比,镁是一种具有成本效益的负极金属,它可能成为一种有潜力的储能来源。然而,镁-氧电池一直在努力克服较差的循环稳定性和缓慢的反应动力学问题。因此,碳纳米管(CNT)上的钌金属纳米颗粒被引入作为镁-氧电池的正极,这些纳米颗粒以其固有的电子特性、大表面积和增加的结晶度而闻名,有利于显著的氧还原反应和析氧反应(ORR和OER)。此外,我们还采用了一种首创的导电混合电解质(CME)(2M Mg(NO):1M Mg(TFSI)/二甘醇二甲醚)。因此,这种基于CME的钌/碳纳米管镁-氧电池的协同结合可以实现长循环寿命、低过电位、优异的可逆性和高离子电导率,还能降低镁负极的固有腐蚀行为。相应地,这种CME与钌/碳纳米管正极的新型结合表现出了65次循环的优异循环稳定性,最大放电容量为25793 mAh/g,过电压平台小至1.4V,明显优于传统单一电解质(CSE)(1M Mg(TFSI)/二甘醇二甲醚)的研究结果。这种基于CME的钌/碳纳米管镁-氧电池设计作为未来的电池技术可能会产生重大成果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验