Hessin Cheriehan, Schleinitz Jules, Le Breton Nolwenn, Choua Sylvie, Grimaud Laurence, Fourmond Vincent, Desage-El Murr Marine, Léger Christophe
Institut de Chimie, Université de Strasbourg, UMR CNRS 7177, Strasbourg 67000, France.
Laboratoire des Biomolécules, Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris 75005, France.
Inorg Chem. 2023 Feb 27;62(8):3321-3332. doi: 10.1021/acs.inorgchem.2c04365. Epub 2023 Feb 13.
Potential inversion refers to the situation where a protein cofactor or a synthetic molecule can be oxidized or reduced twice in a cooperative manner; that is, the second electron transfer is easier than the first. This property is very important regarding the catalytic mechanism of enzymes that bifurcate electrons and the properties of bidirectional redox molecular catalysts that function in either direction of the reaction with no overpotential. Cyclic voltammetry is the most common technique for characterizing the thermodynamics and kinetics of electron transfer to or from these molecules. However, a gap in the literature is the absence of analytical predictions to help interpret the values of the voltammetric peak potentials when potential inversion occurs; the cyclic voltammograms are therefore often analyzed by simulating the data, with no discussion of the possibility of overfitting and often no estimation of the error on the determined parameters. Here we formulate the theory for the voltammetry of freely diffusing or surface-confined two-electron redox species in the experimentally relevant irreversible limit where the peak separation depends on the scan rate. We explain why the model is intrinsically underdetermined, and we illustrate this conclusion by analysis of the voltammetry of a nickel complex with redox-active iminosemiquinone ligands. Being able to characterize the thermodynamics of two-electron electron-transfer reactions will be crucial for designing more efficient catalysts.
电位反转是指蛋白质辅助因子或合成分子能够以协同方式被氧化或还原两次的情况;也就是说,第二次电子转移比第一次更容易。对于使电子分叉的酶的催化机制以及在反应的任一方向上都无过电位地起作用的双向氧化还原分子催化剂的性质而言,这一性质非常重要。循环伏安法是表征电子向这些分子转移或从这些分子转移的热力学和动力学的最常用技术。然而,文献中的一个空白是缺乏有助于解释发生电位反转时伏安峰电位值的分析预测;因此,循环伏安图通常通过模拟数据进行分析,而不讨论过度拟合的可能性,并且通常不估计所确定参数的误差。在这里,我们阐述了在实验相关的不可逆极限下自由扩散或表面受限的双电子氧化还原物种的伏安法理论,在该极限下峰间距取决于扫描速率。我们解释了为什么该模型本质上是欠定的,并通过分析具有氧化还原活性亚氨基半醌配体的镍配合物的伏安法来说明这一结论。能够表征双电子转移反应的热力学对于设计更高效的催化剂至关重要。