Suppr超能文献

将遗传学、转录组学和蛋白质组学整合到肺组织中以研究慢性阻塞性肺疾病。

Integrating Genetics, Transcriptomics, and Proteomics in Lung Tissue to Investigate Chronic Obstructive Pulmonary Disease.

机构信息

Channing Division of Network Medicine, Harvard Medical School, and.

Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts; and.

出版信息

Am J Respir Cell Mol Biol. 2023 Jun;68(6):651-663. doi: 10.1165/rcmb.2022-0302OC.

Abstract

The integration of transcriptomic and proteomic data from lung tissue with chronic obstructive pulmonary disease (COPD)-associated genetic variants could provide insight into the biological mechanisms of COPD. Here, we assessed associations between lung transcriptomics and proteomics with COPD in 98 subjects from the Lung Tissue Research Consortium. Low correlations between transcriptomics and proteomics were generally observed, but higher correlations were found for COPD-associated proteins. We integrated COPD risk SNPs or SNPs near COPD-associated proteins with lung transcripts and proteins to identify regulatory -quantitative trait loci (QTLs). Significant expression QTLs (eQTLs) and protein QTLs (pQTLs) were found regulating multiple COPD-associated biomarkers. We investigated mediated associations from significant pQTLs through transcripts to protein levels of COPD-associated proteins. We also attempted to identify colocalized effects between COPD genome-wide association studies and eQTL and pQTL signals. Evidence was found for colocalization between COPD genome-wide association study signals and a pQTL for RHOB and an eQTL for DSP. We applied weighted gene co-expression network analysis to find consensus COPD-associated network modules. Two network modules generated by consensus weighted gene co-expression network analysis were associated with COPD with a false discovery rate lower than 0.05. One network module is related to the catenin complex, and the other module is related to plasma membrane components. In summary, multiple -acting determinants of transcripts and proteins associated with COPD were identified. Colocalization analysis, mediation analysis, and correlation-based network analysis of multiple omics data may identify key genes and proteins that work together to influence COPD pathogenesis.

摘要

肺组织转录组和蛋白质组数据与慢性阻塞性肺疾病(COPD)相关遗传变异的整合,可以深入了解 COPD 的生物学机制。在这里,我们评估了来自肺组织研究联盟的 98 名受试者的肺转录组和蛋白质组与 COPD 之间的相关性。通常情况下,转录组和蛋白质组之间的相关性较低,但与 COPD 相关的蛋白质之间的相关性较高。我们将 COPD 风险 SNP 或 COPD 相关蛋白附近的 SNP 与肺转录本和蛋白质进行整合,以鉴定调节定量性状基因座(QTL)。发现了多个 COPD 相关生物标志物的显著表达 QTL(eQTL)和蛋白质 QTL(pQTL)。我们通过转录本调查了从显著的 pQTL 到 COPD 相关蛋白的蛋白质水平的中介关联。我们还试图确定 COPD 全基因组关联研究与 eQTL 和 pQTL 信号之间的共定位效应。在 COPD 全基因组关联研究信号和 RHOB 的 pQTL 以及 DSP 的 eQTL 之间发现了共定位的证据。我们应用加权基因共表达网络分析来发现共识 COPD 相关网络模块。共识加权基因共表达网络分析生成的两个网络模块与 COPD 相关,假发现率低于 0.05。一个网络模块与连环蛋白复合物有关,另一个模块与质膜成分有关。总之,确定了与 COPD 相关的转录本和蛋白质的多种作用决定因素。多组学数据的共定位分析、中介分析和基于相关性的网络分析可以确定共同作用影响 COPD 发病机制的关键基因和蛋白质。

相似文献

10
Applying Functional Genomics to Chronic Obstructive Pulmonary Disease.应用功能基因组学于慢性阻塞性肺疾病。
Ann Am Thorac Soc. 2018 Dec;15(Suppl 4):S239-S242. doi: 10.1513/AnnalsATS.201808-530MG.

引用本文的文献

6
Dysanapsis Genetic Risk Predicts Lung Function Across the Lifespan.发育不全遗传风险可预测一生的肺功能。
Am J Respir Crit Care Med. 2024 Dec 15;210(12):1421-1431. doi: 10.1164/rccm.202401-0011OC.
10
The 2023 Report on the Proteome from the HUPO Human Proteome Project.2023 年人类蛋白质组组织蛋白质组报告。
J Proteome Res. 2024 Feb 2;23(2):532-549. doi: 10.1021/acs.jproteome.3c00591. Epub 2024 Jan 17.

本文引用的文献

1
Lung proteomic biomarkers associated with chronic obstructive pulmonary disease.与慢性阻塞性肺疾病相关的肺蛋白质组生物标志物。
Am J Physiol Lung Cell Mol Physiol. 2021 Dec 1;321(6):L1119-L1130. doi: 10.1152/ajplung.00198.2021. Epub 2021 Oct 20.
4
6
Alpha-1 Antitrypsin Deficiency: The Learning Goes On.α-1抗胰蛋白酶缺乏症:研究仍在继续。
Am J Respir Crit Care Med. 2020 Jul 1;202(1):6-7. doi: 10.1164/rccm.202004-0922ED.
9
Unsupervised discovery of phenotype-specific multi-omics networks.无监督发现表型特异性多组学网络。
Bioinformatics. 2019 Nov 1;35(21):4336-4343. doi: 10.1093/bioinformatics/btz226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验