Suppr超能文献

采用大面积制作方法的自对准多层 X 射线吸收光栅,用于 X 射线相衬成像。

Self-aligned multi-layer X-ray absorption grating using large-area fabrication methods for X-ray phase-contrast imaging.

机构信息

Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L3G1, Canada.

Centre for Bioengineering and Biotechnology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L3G1, Canada.

出版信息

Sci Rep. 2023 Feb 13;13(1):2508. doi: 10.1038/s41598-023-29580-2.

Abstract

X-ray phase-contrast (XPCi) imaging methods are an emerging medical imaging approach that provide significantly better soft tissue contrast and could function as a viable extension to conventional X-ray, CT, and even some MRI. Absorption gratings play a central role in grating-based XPCi systems, especially because they enable the acquisition of three images in a single exposure: transmission, refraction, and dark-field. An impediment to commercial development and adoption of XPCi imaging systems is the lack of large area, high aspect ratio absorption gratings. Grating technology development, primarily due to technological limitations, has lagged system development and today prevents the scaling up of XPCi system into a footprint and price point acceptable to the medical market. In this work, we report on a self-aligned multi-layer grating fabrication process that can enable large-area X-ray absorption gratings with micron-scale feature sizes. We leverage large-area fabrication techniques commonly employed by the thin-film transistor (TFT) display industry. Conventional ITO-on-glass substrates are used with a patterned film of Cr/Au/Cr that serves as a self-aligned lithography mask for backside exposure. Commonly available SU-8 photoresist is patterned using the backside exposure mask followed by an electroplating step to fill the gaps in the SU-8 with X-ray attenuating material. Consequently, the electroplated patterned material acts as a self-aligned photomask for subsequent SU-8 layer patterning and so forth. The repeatability of the reported process makes it suitable for achieving higher aspect ratio structures and is advantageous over previously reported X-ray LIGA approaches. A prototype three-layer grating, with a thickness of around [Formula: see text], having a visibility of 0.28 at [Formula: see text] with a [Formula: see text] active area was fabricated on a 4-inch glass substrate and demonstrated by modifying a commercially available 3D propagation-based XPCi Microscope. The scalable and cost-effective approach to build larger area X-ray gratings reported in this work can help expedite the commercial development and adoption of previously reported Talbot-Lau, speckle-tracking, as well as coded-aperture XPCi systems for large-area clinical and industrial applications.

摘要

X 射线相衬(XPCi)成像方法是一种新兴的医学成像方法,可提供显著更好的软组织对比度,并可作为传统 X 射线、CT 甚至某些 MRI 的可行扩展。吸收光栅在基于光栅的 XPCi 系统中起着核心作用,特别是因为它们能够在单次曝光中获取三张图像:透射、折射和暗场。商业开发和采用 XPCi 成像系统的一个障碍是缺乏大面积、高纵横比的吸收光栅。由于技术限制,光栅技术的发展落后于系统发展,今天阻止了 XPCi 系统的扩展,使其足迹和价格点为医疗市场所接受。在这项工作中,我们报告了一种自对准多层光栅制造工艺,该工艺可实现具有微米级特征尺寸的大面积 X 射线吸收光栅。我们利用了薄膜晶体管(TFT)显示行业常用的大面积制造技术。使用带有 Cr/Au/Cr 图案膜的常规 ITO 玻璃衬底作为背面曝光的自对准光刻掩模。常用的 SU-8 光刻胶使用背面曝光掩模进行图案化,然后进行电镀步骤,用 X 射线衰减材料填充 SU-8 的间隙。因此,电镀图案化材料充当后续 SU-8 层图案化等的自对准光刻掩模。所报道的工艺的可重复性使其适合实现更高纵横比的结构,并且优于以前报道的 X 射线 LIGA 方法。在 4 英寸玻璃衬底上制造了一个原型三层光栅,厚度约为[Formula: see text],在[Formula: see text]下具有 0.28 的可见度,具有[Formula: see text]的有效面积,并通过修改商用 3D 传播型 XPCi 显微镜进行了演示。本工作报道的构建更大面积 X 射线光栅的可扩展且具有成本效益的方法可以帮助加速以前报道的 Talbot-Lau、斑点跟踪以及编码孔径 XPCi 系统的商业开发和采用,以用于大面积临床和工业应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44d3/9925796/2720b6f68b68/41598_2023_29580_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验