Suppr超能文献

一种用于多囊卵巢综合征监测的新型混合分割方法的性能分析

Performance Analysis of a Novel Hybrid Segmentation Method for Polycystic Ovarian Syndrome Monitoring.

作者信息

Nazarudin Asma' Amirah, Zulkarnain Noraishikin, Mokri Siti Salasiah, Zaki Wan Mimi Diyana Wan, Hussain Aini, Ahmad Mohd Faizal, Nordin Ili Najaa Aimi Mohd

机构信息

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.

Advanced Reproductive Centre, Department of Obstetrics and Gynaecology, Faculty of Medicine, Kuala Lumpur Campus, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia.

出版信息

Diagnostics (Basel). 2023 Feb 16;13(4):750. doi: 10.3390/diagnostics13040750.

Abstract

Experts have used ultrasound imaging to manually determine follicle count and perform measurements, especially in cases of polycystic ovary syndrome (PCOS). However, due to the laborious and error-prone process of manual diagnosis, researchers have explored and developed medical image processing techniques to help with diagnosing and monitoring PCOS. This study proposes a combination of Otsu's thresholding with the Chan-Vese method to segment and identify follicles in the ovary with reference to ultrasound images marked by a medical practitioner. Otsu's thresholding highlights the pixel intensities of the image and creates a binary mask for use with the Chan-Vese method to define the boundary of the follicles. The acquired results were compared between the classical Chan-Vese method and the proposed method. The performances of the methods were evaluated in terms of accuracy, Dice score, Jaccard index and sensitivity. In overall segmentation evaluation, the proposed method showed superior results compared to the classical Chan-Vese method. Among the calculated evaluation metrics, the sensitivity of the proposed method was superior, with an average of 0.74 ± 0.12. Meanwhile, the average sensitivity for the classical Chan-Vese method was 0.54 ± 0.14, which is 20.03% lower than the sensitivity of the proposed method. Moreover, the proposed method showed significantly improved Dice score ( = 0.011), Jaccard index ( = 0.008) and sensitivity ( = 0.0001). This study showed that the combination of Otsu's thresholding and the Chan-Vese method enhanced the segmentation of ultrasound images.

摘要

专家们已使用超声成像来手动确定卵泡数量并进行测量,尤其是在多囊卵巢综合征(PCOS)的病例中。然而,由于手动诊断过程繁琐且容易出错,研究人员探索并开发了医学图像处理技术来辅助PCOS的诊断和监测。本研究提出将大津阈值法与Chan-Vese方法相结合,以参照医学从业者标记的超声图像对卵巢中的卵泡进行分割和识别。大津阈值法突出了图像的像素强度,并创建了一个二进制掩码,用于与Chan-Vese方法一起定义卵泡的边界。将经典Chan-Vese方法与所提出的方法的获取结果进行了比较。从准确性、Dice分数、Jaccard指数和灵敏度方面对这些方法的性能进行了评估。在总体分割评估中,所提出的方法与经典Chan-Vese方法相比显示出更优的结果。在所计算的评估指标中,所提出方法的灵敏度更优,平均为0.74±0.12。同时,经典Chan-Vese方法的平均灵敏度为0.54±0.14,比所提出方法的灵敏度低20.03%。此外,所提出的方法在Dice分数(=0.011)、Jaccard指数(=0.008)和灵敏度(=0.0001)方面均有显著提高。本研究表明,大津阈值法与Chan-Vese方法的结合增强了超声图像的分割效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377c/9954948/ddbd101ff3e9/diagnostics-13-00750-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验