Suppr超能文献

TWAS-GKF:一种用于转录组关联研究中基于置换检验的因果基因识别的新方法。

TWAS-GKF: a novel method for causal gene identification in transcriptome-wide association studies with knockoff inference.

机构信息

Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, 999077, China.

出版信息

Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae502.

Abstract

MOTIVATION

Transcriptome-wide association study (TWAS) aims to identify trait-associated genes regulated by significant variants to explore the underlying biological mechanisms at a tissue-specific level. Despite the advancement of current TWAS methods to cover diverse traits, traditional approaches still face two main challenges: (i) the lack of methods that can guarantee finite-sample false discovery rate (FDR) control in identifying trait-associated genes; and (ii) the requirement for individual-level data, which is often inaccessible.

RESULTS

To address this challenge, we propose a powerful knockoff inference method termed TWAS-GKF to identify candidate trait-associated genes with a guaranteed finite-sample FDR control. TWAS-GKF introduces the main idea of Ghostknockoff inference to generate knockoff variables using only summary statistics instead of individual-level data. In extensive studies, we demonstrate that TWAS-GKF successfully controls the finite-sample FDR under a pre-specified FDR level across all settings. We further apply TWAS-GKF to identify genes in brain cerebellum tissue from the Genotype-Tissue Expression (GTEx) v8 project associated with schizophrenia (SCZ) from the Psychiatric Genomics Consortium (PGC), and genes in liver tissue related to low-density lipoprotein cholesterol (LDL-C) from the UK Biobank, respectively. The results reveal that the majority of the identified genes are validated by Open Targets Validation Platform.

AVAILABILITY AND IMPLEMENTATION

The R package TWAS.GKF is publicly available at https://github.com/AnqiWang2021/TWAS.GKF.

摘要

动机

全转录组关联研究(TWAS)旨在识别受显著变异调控的与性状相关的基因,以在组织特异性水平上探索潜在的生物学机制。尽管当前 TWAS 方法已经涵盖了多种性状,但传统方法仍然面临两个主要挑战:(i)缺乏能够保证在识别与性状相关的基因时有限样本错误发现率(FDR)控制的方法;(ii)需要个体水平的数据,而这通常是无法获得的。

结果

为了解决这个挑战,我们提出了一种强大的置换检验推断方法 TWAS-GKF,该方法可以保证在有限样本中控制 FDR,从而识别候选与性状相关的基因。TWAS-GKF 引入了 Ghostknockoff 推断的主要思想,仅使用汇总统计信息而不是个体水平的数据来生成置换变量。在广泛的研究中,我们证明了 TWAS-GKF 在所有设置下都能成功地在预定的 FDR 水平下控制有限样本的 FDR。我们进一步将 TWAS-GKF 应用于从精神疾病基因组学联盟(PGC)的基因型组织表达(GTEx)v8 项目中识别与精神分裂症(SCZ)相关的大脑小脑组织中的基因,以及从英国生物库中识别与低密度脂蛋白胆固醇(LDL-C)相关的肝脏组织中的基因。结果表明,大多数鉴定出的基因都被 Open Targets Validation Platform 验证。

可用性和实现

TWAS.GKF 的 R 包可在 https://github.com/AnqiWang2021/TWAS.GKF 上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf93/11361808/23e04dd6556f/btae502f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验