Department of Physics, Mahasarakham University, Mahasarakham, 44150, Thailand.
School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
Sci Rep. 2023 Feb 14;13(1):2637. doi: 10.1038/s41598-023-29597-7.
The discovery of magnetization switching via spin transfer torque (STT) in PMA-based MTJs has led to the development of next-generation magnetic memory technology with high operating speed, low power consumption and high scalability. In this work, we theoretically investigate the influence of finite size and temperature on the mechanism of magnetization switching in CoFeB-MgO based MTJ to get better understanding of STT-MRAM fundamentals and design. An atomistic model coupled with simultaneous solution of the spin accumulation is employed. The results reveal that the incoherent switching process in MTJ strongly depends on the system size and temperature. At 0 K, the coherent switching mode can only be observed in MTJs with the diameter less than 20 nm. However, at any finite temperature, incoherent magnetization switching is thermally excited. Furthermore, increasing temperature results in decreasing switching time of the magnetization. We conclude that temperature dependent properties and thermally driven reversal are important considerations for the design and development of advanced MRAM systems.
通过自旋转移扭矩(STT)在各向异性磁矩(PMA)基 MTJ 中发现的磁化翻转,推动了具有高速运行、低功耗和高可扩展性的下一代磁性随机存储器技术的发展。在这项工作中,我们从理论上研究了有限尺寸和温度对基于 CoFeB-MgO 的 MTJ 中磁化翻转机制的影响,以更好地理解 STT-MRAM 的基本原理和设计。采用了一种原子模型,并同时求解了自旋积累。结果表明,MTJ 中的非相干翻转过程强烈依赖于系统尺寸和温度。在 0K 时,只有直径小于 20nm 的 MTJ 中才能观察到相干翻转模式。然而,在任何有限温度下,非相干磁化翻转都会被热激发。此外,温度的升高会导致磁化翻转时间的减少。我们的结论是,温度相关的特性和热驱动反转是先进的 MRAM 系统设计和开发的重要考虑因素。